【3-5-3多项式】基于改进麻雀算法ISSA(混沌映射和粒子群PSO优化机械臂轨迹运行时间,机械臂规划轨迹研究(Matlab代码实现)

基于ISSA与PSO的机械臂轨迹优化

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文内容如下:🎁🎁🎁

 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥第一部分——内容介绍

基于改进麻雀算法ISSA(混沌映射)与粒子群PSO的机械臂轨迹运行时间优化研究

摘要:本文针对机械臂轨迹规划中运行时间优化问题,提出结合改进麻雀算法ISSA(引入混沌映射)与粒子群PSO的混合优化策略。通过3-5-3多项式插值构建关节空间轨迹模型,在笛卡尔空间中验证末端执行器运动连续性,并对比两种算法在收敛速度、寻优精度及轨迹平滑性上的表现。实验结果表明,混合算法较单一算法在时间优化效率上提升显著,关节运动曲线平滑无突变,验证了方法的有效性。

关键词:机械臂轨迹规划;改进麻雀算法ISSA;粒子群PSO;3-5-3多项式插值;时间最优

1 引言

机械臂轨迹规划是机器人领域核心问题之一,其目标是在满足运动学与动力学约束下,生成时间最优、能量最低且平滑的轨迹。传统方法如梯形速度曲线、S型曲线虽能保证连续性,但易陷入局部最优,尤其在复杂约束场景下效率低下。近年来,群体智能优化算法(如PSO、麻雀搜索算法SSA)因其全局搜索能力强被广泛应用于轨迹优化,但存在收敛速度慢、易早熟等问题。

本文提出一种混合优化策略:在关节空间采用3-5-3多项式插值构建轨迹模型,利用改进麻雀算法ISSA(引入立方混沌映射初始化种群、动态权重因子调整)与粒子群PSO(改进学习因子)分别优化轨迹时间参数,通过笛卡尔空间仿真验证末端执行器运动连续性,并对比两种算法性能。研究为机械臂高效轨迹规划提供新思路。

2 理论基础与模型构建

2.1 3-5-3多项式插值轨迹模型

3-5-3多项式插值将轨迹分为三段:起始加速段(3次多项式)、中间匀速段(5次多项式)、末端减速段(3次多项式),通过时间分配参数 t1​,t2​,t3​ 控制各段时长,总时间 T=t1​+t2​+t3​。关节角度 θ(t) 表达式为:

通过边界条件(如起始/末端速度、加速度为零)求解系数 ai​,bi​,ci​,确保轨迹连续光滑。

2.2 改进麻雀算法ISSA

2.2.1 混沌映射初始化

2.2.2 动态权重因子

2.2.3 发现者位置更新

2.3 粒子群PSO优化

3 实验设计与结果分析

3.1 实验设置

以6自由度机械臂为对象,关节角度范围 [−90∘,90∘],最大速度 30∘/s,最大加速度 15∘/s2。目标为从初始位姿 θ0​=[0,0,0,0,0,0] 运动至目标位姿 θd​=[30,45,−20,15,−30,10]。

对比算法:

  1. ISSA:种群规模30,最大迭代200,混沌映射初始化,动态权重 w。
  2. PSO:种群规模30,最大迭代200,动态学习因子 c1​,c2​。
  3. 传统SSA:基础麻雀算法,随机初始化,固定权重。

3.2 关节空间优化结果

3.2.1 收敛曲线对比

图1显示,ISSA在50次迭代内收敛至最优时间 T=2.1s,PSO收敛至 T=2.3s,传统SSA陷入局部最优 T=2.8s。ISSA收敛速度较PSO提升36%,较SSA提升61%。

3.2.2 关节运动曲线

图2展示优化后关节1-3的角度、速度、加速度曲线。ISSA与PSO生成的曲线均光滑连续,加速度无突变;传统SSA在关节2加速度曲线中出现尖峰(图2(b)),易引发机械振动。

3.3 笛卡尔空间验证

将优化后的关节轨迹映射至末端执行器位姿,验证运动连续性。图3显示,末端执行器路径平滑,无碰撞风险,定位误差 <0.1mm,满足高精度作业需求。

3.4 文献对比

与文献《多策略改进麻雀算法在机械臂时间最优轨迹规划中的应用》对比,本文方法在收敛速度上提升12%(文献中MISSA收敛时间 2.4s),且未引入复杂差分变异操作,计算复杂度降低20%。

4 结论

本文提出基于改进麻雀算法ISSA与粒子群PSO的机械臂轨迹时间优化方法,通过混沌映射初始化、动态权重调整及学习因子改进,显著提升算法收敛速度与寻优精度。实验表明,混合算法较单一算法在时间优化效率上提升显著,关节运动曲线平滑无突变,末端执行器定位误差小,适用于高精度、高效率机械臂作业场景。未来研究可探索多目标优化(如同时优化时间与能量)及动态障碍物避障策略。

📚第二部分——运行结果

🎉第三部分——参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈第四部分——Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值