Dataset——提供一种方式去获取数据及其label(read_data.py)
- 如何获取每一个数据及其label
- 告诉我们总共有多少数据
Dataloder——为后面的网络提供不同的数据形式.
TensorBoard
TensorBoard是一个可视化工具,它可以用来展示网络图、张量的指标变化、张量的分布情况。(张量-Tensor:pytorch中的基本操作对象,可以看做是包含单一数据类型元素的多维矩阵)
安装TensorBoard,pip install tensorboard
1、如何打开事件文件?
- 在终端输入:tensorboard --logdir=logs/事件文件所在文件夹名(改端口:--port=6007)
- 当出现一张图片两种数值比例,如y=2x,y=3x,图片会出错,可以先删除logs文件夹的文件,然后对按ctrl+c,quit退出,再重新建立一个日志。
2、常用函数
writer = SummaryWriter("logs") #创建一个tensorboard文件,保存目录“logs”
writer.add_scalar("标签",标签的值y(scalar_value),x轴坐标(global_step)) #画loss曲线writer.add_image(
tag,img_tensor (torch.Tensor, numpy.array, or string/blobname) global_step (int): Global step value to record walltime (float): dataformats="hwc": 数据通道格式
)
writer.add_graph() #创建Graphs,Graphs中存放了网络结构 model:pytorch模型 input_to_model:pytorch模型的输入
3、读取图片,并使用numpy转换类型
import numpy as np
from PIL import Image
image_path="Data/train/ants_image/0013035.jpg"
img_PIL = Image.open(image_path) #读取图片
img_array = np.array(img_PIL) #转换图片类型
注:从PIL到numpy,需要在add_image()中指定shape中每一个数字/维表示的含义
Transforms
对图片进行一些变换,transforms.py工具箱。
python的用法 =》 tensor数据类型
通过transforms.ToTensor去解决两个问题
1、transforms如何使用?
from torchvision import transforms
# 将图片转换成tensor的image
tensor_trans = transforms.ToTensor() #创建一个工具
tensor_img = tensor_trans(img) #将图片img转换成tensor类型
2、为什么我们需要Tensor数据类型
3、常见的Transforms
输入:PIL ——Image.open()
输入:tensor ——ToTensor()
作用t:narrays ——cv.imread()
- call与普通def的区别
class Person:
def __call__(self, name):
print("__call__"+"hello" +name)
def hello(self, name):
print("hello"+name)
person= Person()
person("zhangsan")
person.hello("lisi")
输出:
__call__hellozhangsan
hellolisi
- ToTensor
将``PIL Image`` or ``numpy.ndarray``转换成 tensor
trans_totensot = transforms.ToTensor()
img_tensor = trans_totensot(img)
writer.add_image("ToTensor",img_tensor)
- Normalize——图像标准化
output[channel] = (input[channel] - mean[channel]) / std[channel]
(input-0.5)/0.5=2*input-1 input属于[0,1] result属于[-1,1]
归一化目的:就是将不同尺度上的评判结果统一到一个尺度上,从而可以作比较,作计算
# Normalize
print(img_tensor[0][0][0])
trans_norm = transforms.Normalize([6,3,2],[9,3,5])
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image("Normalize",img_norm,2)
- Resize——调整图像大小
print(img.size)
trans_resize = transforms.Resize((512,512))
# img PIL -> resize -> img_resize PIL
img_resize = trans_resize(img)
# img_resize PIL -> totensor -> img_resize tensor
img_resize = trans_totensor(img_resize)
writer.add_image("Resize",img_resize,0)
print(img_resize)
- Compose - resize
把多个步骤整合在一起
trans_resize_2 = transforms.Resize(512)
#PIL -> PIL -> tensor
trans_compose = transforms.Compose([trans_resize_2,trans_totensor])
img_resize_2 = trans_compose(img)
writer.add_image("Resize",img_resize_2,1)
- RandomCrop 裁剪图片
# RandomCrop 随机裁剪
trans_random = transforms.RandomCrop(500,1000)
trans_compose_2 = transforms.Compose([trans_random, trans_totensor])
for i in range(10):
img_crop = trans_compose_2(img)
writer.add_image("RandomCrop", img_crop, i)
4、使用技巧总结
关注输入输出类型
多看官方文档
关注方法需要什么参数
注:不知道返回值时,使用print(type)