PyTorch的学习(3)--读取数据

本文详细介绍了如何使用Dataset获取并处理数据及其标签,Dataloader的数据转换,以及如何利用TensorBoard进行模型可视化。涵盖了ToTensor、Normalize、Resize、Compose等变换方法,以及如何使用这些工具进行图像预处理和Loss曲线跟踪。
摘要由CSDN通过智能技术生成

Dataset——提供一种方式去获取数据及其label(read_data.py)

  • 如何获取每一个数据及其label
  • 告诉我们总共有多少数据

Dataloder——为后面的网络提供不同的数据形式.

TensorBoard

TensorBoard是一个可视化工具,它可以用来展示网络图、张量的指标变化、张量的分布情况。(张量-Tensor:pytorch中的基本操作对象,可以看做是包含单一数据类型元素的多维矩阵)

安装TensorBoard,pip install tensorboard

1、如何打开事件文件?

  • 在终端输入:tensorboard --logdir=logs/事件文件所在文件夹名(改端口:--port=6007)
  • 当出现一张图片两种数值比例,如y=2x,y=3x,图片会出错,可以先删除logs文件夹的文件,然后对按ctrl+c,quit退出,再重新建立一个日志。

2、常用函数 

writer = SummaryWriter("logs")    #创建一个tensorboard文件,保存目录“logs”
writer.add_scalar("标签",标签的值y(scalar_value),x轴坐标(global_step))  #画loss曲线writer.add_image(

tag,img_tensor (torch.Tensor, numpy.array, or string/blobname)
global_step (int): Global step value to record
walltime (float): 
dataformats="hwc": 数据通道格式

)
writer.add_graph()   #创建Graphs,Graphs中存放了网络结构  model:pytorch模型  input_to_model:pytorch模型的输入

3、读取图片,并使用numpy转换类型

import numpy as np
from PIL import Image

image_path="Data/train/ants_image/0013035.jpg"
img_PIL = Image.open(image_path)      #读取图片
img_array = np.array(img_PIL)         #转换图片类型

注:从PIL到numpy,需要在add_image()中指定shape中每一个数字/维表示的含义

Transforms

对图片进行一些变换,transforms.py工具箱。

python的用法 =》 tensor数据类型

 通过transforms.ToTensor去解决两个问题

1、transforms如何使用?

from torchvision import transforms

# 将图片转换成tensor的image
tensor_trans = transforms.ToTensor()   #创建一个工具
tensor_img = tensor_trans(img)         #将图片img转换成tensor类型

2、为什么我们需要Tensor数据类型

3、常见的Transforms

输入:PIL ——Image.open()
输入:tensor ——ToTensor()
作用t:narrays ——cv.imread()

  • call与普通def的区别
class Person:
    def __call__(self, name):
        print("__call__"+"hello" +name)

    def hello(self, name):
        print("hello"+name)

person= Person()
person("zhangsan")
person.hello("lisi")

输出:
__call__hellozhangsan
hellolisi
  • ToTensor

         将``PIL Image`` or ``numpy.ndarray``转换成 tensor

trans_totensot = transforms.ToTensor()
img_tensor = trans_totensot(img)
writer.add_image("ToTensor",img_tensor)
  • Normalize——图像标准化

        output[channel] = (input[channel] - mean[channel]) / std[channel]
        (input-0.5)/0.5=2*input-1    input属于[0,1]    result属于[-1,1]

归一化目的:就是将不同尺度上的评判结果统一到一个尺度上,从而可以作比较,作计算

# Normalize
print(img_tensor[0][0][0])
trans_norm = transforms.Normalize([6,3,2],[9,3,5])
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image("Normalize",img_norm,2)
  • Resize——调整图像大小
print(img.size)
trans_resize = transforms.Resize((512,512))
# img PIL -> resize -> img_resize PIL
img_resize = trans_resize(img)
# img_resize PIL -> totensor -> img_resize tensor
img_resize = trans_totensor(img_resize)
writer.add_image("Resize",img_resize,0)
print(img_resize)
  • Compose - resize

        把多个步骤整合在一起

trans_resize_2 = transforms.Resize(512)
#PIL -> PIL -> tensor
trans_compose = transforms.Compose([trans_resize_2,trans_totensor])
img_resize_2 = trans_compose(img)
writer.add_image("Resize",img_resize_2,1)
  • RandomCrop  裁剪图片
# RandomCrop 随机裁剪
trans_random = transforms.RandomCrop(500,1000)
trans_compose_2 = transforms.Compose([trans_random, trans_totensor])
for i in range(10):
    img_crop = trans_compose_2(img)
    writer.add_image("RandomCrop", img_crop, i)

4、使用技巧总结

        关注输入输出类型
        多看官方文档
        关注方法需要什么参数

注:不知道返回值时,使用print(type) 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值