计算机设计大赛心得总结-软件开发组

写下这一篇文章目的是为了帮助像当初我一样迷茫的参赛选手。

前前后后参加了二十多个比赛,这是我大学生涯的最后一次比赛了。

比赛经过
  • 校赛
    参加校赛,我们学校没有答辩。熬夜把所需要的ppt、文档、视频等材料交上去以后,过了一个月才告诉我们我们进省赛了,校赛拿了二等奖。进省赛的消息让人高兴,进一步把材料完整以后就上推省赛了。

  • 省赛
    晚上十点半走出图书馆,日常qq看消息。看到我们拿到了省赛二等奖被推荐国赛了,当时就兴奋了,说实话这是我第一次参加全国性比赛。

  • 国赛
    参加国赛还是挺平静的,考研备考期间,分出三天时间准备这个比赛,像各位一样在网上搜索各种经验贴,各种心得。

国赛成绩出来了,三等奖,说实话确实是答辩不行!

经验

如果想进国赛,首先,要紧扣热点,比如区块链,元宇宙,nlp,什么什么牛逼算法,这种看上去很高大上的,又或者你的系统特别好,代码规范功能多也可以进国赛。评委没有问我们深入的技术性问题,一般根据你的答辩内容提问,你的ppt介绍什么。答辩的时候要能吹,评委很大可能并不会问你具体的实现怎么弄的。

评委提问:大致问了几个方面,
1.你这个算法的标准,路线规定精确到哪一级,省市县?
2.美团外卖的路线规划是很精确地但是你的算法却是不精确的?
3.你们的材料上面说了这是一个创新?你们创新在哪里了?这种说法正确?
4.你们的系统现在可以用吗?打开看看?
5.你们的系统算法具体使用流程?

内容提要 2017年(第10届)中国大学生计算机设计大赛(以下简称“大赛”或“国赛”)是由中国高等教育学会、教育部高等学校计算机类专业教学指导委员会、软件工程专业教学指导委员会、大学计算机课程教学指导委员会、文科计算机基础教学指导分委员会联合成的中国大学生计算机设计大赛织委员会主办的面向全国高校在校本科学生的非盈利、公益性、科技型的群众性活动。 大赛的目的在于落实高等学校创新能力提升计划,进一步推动本科学生计算机教学改革,激发学生学习计算机知识和技能的兴趣和潜能,提高其运用信息技术解决实际问题(为就业及专业服务所需要)的综合能力,以培养德智体美全面发展、具有团队合作意识、创新创业能力的综合型、应用型的人才。大赛将本着公开、公平、公正的原则面对每一件作品。 为了更好地指导2017年的大赛大赛委会编了《中国大学生计算机设计大赛2017年参赛指南》。 《参赛指南》共分11章。由第1章大赛通知,第2章大赛章程,第3章大赛委会,第4章大赛内容及分类,第5章国赛与地方赛,第6章国赛现场决赛的申办、时间地点与内容,第7章参赛事项,第8章奖项设置,第9章作品评比与评比专家规范,第10章获奖作品的研讨,以及第11章2016年获奖概况与2016年获奖作品选登等成。 本书有助于规范参赛作品和提高大赛作品质量。因此是参赛院校,特别是参赛队指导教师的必备用书,也是参赛学生的重要参考资料。此外,也是从事计算机技术基本应用教学与多媒体设计教学很好的参考用书。而对于2016年已参赛一、二等获奖的师生,则具有一定的收藏价值。
### 关于中国大学生计算机设计大赛软件应用与开发类别摘要文档示例 尽管当前提供的引用并未直接提及中国大学生计算机设计大赛的具体内容,但从相关领域可以推测出此类比赛的作品通常涉及实际应用场景下的技术实现和创新思路。以下是基于多实例学习[^1]、深度学习调参经验[^2]以及分类器构建方法[^3]的知识背景,为中国大学生计算机设计大赛中的“软件应用与开发”类别提供一份可能的摘要文档模板。 #### 摘要文档示例 **题目**: 基于深度学习的情分析系统设计与实现 **摘要**: 本作品旨在通过深度学习技术解决自然语言处理中的情分析问题。我们采用卷积神经网络(CNN)作为核心模型架构,并引入循环神经网络(RNN)来捕捉文本序列特征。为了优化模型性能,在超参数调整方面进行了大量实验,包括但不限于学习率衰减策略、批量大小的选择以及激活函数类型的对比测试。最终,我们的系统能够在公开数据集上达到较高的准确率,同时具备良好的泛化能力。此外,针对实际部署需求,还实现了轻量化版本的推理引擎,适用于移动端设备运行环境。整体方案不仅展示了技术创新性,也体现了较强的实用价值和社会意义。 --- **题目**: 多视角人脸识别系统的研发 **摘要**: 随着人工智能技术的发展,人脸识别已成为众多场景下不可或缺的技术手段之一。然而传统单一视角的人脸识别方法容易受到光照条件变化等因素的影响而降低精度。为此,本项目提出了一个多视角融合框架,利用视图间成对约束信息进行协同度量学习,从而有效提升了跨角度人脸匹配效果。具体而言,我们将不同摄像头捕获到的脸部图像映射至统一特征空间,并在此基础上定义距离度量准则;随后借助大间隔理论指导聚类过程完成身份标注任务。经过多次迭代改进后,该系统已成功应用于校园安全监控平台当中,显著提高了通行效率及管理便捷程度。 --- ### 技术细节补充说明 对于上述两个案例来说,它们分别代表了不同类型的应用方向——前者聚焦于文本挖掘领域内的特定子课题即情绪倾向判断;后者则围绕生物特征验证展开深入探讨。无论哪一类选题都需注意以下几点: - 数据预处理阶段的重要性不可忽视,尤其是当面临不平衡分布状况时更应采取适当措施加以平衡。 - 在构建复杂模型之前先尝试简单基线模型以便更好地理解问题本质。 - 结合业务逻辑设定合理的评估指标体系用于衡量解决方案优劣程度。 ```python # 示例代码片段展示如何加载常见NLP库并初始化基础模型 import tensorflow as tf from tensorflow.keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense def create_cnn_model(vocab_size, embedding_dim, max_length): model = tf.keras.Sequential([ Embedding(input_dim=vocab_size, output_dim=embedding_dim, input_length=max_length), Conv1D(filters=128, kernel_size=5, activation='relu'), GlobalMaxPooling1D(), Dense(units=64, activation='relu'), Dense(units=1, activation='sigmoid') ]) return model ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值