Attentional Feature Fusion 注意力整合模块

本文提出了一个使用注意力机制进行特征融合的方法,通常情况下,特征融合通过简单的操作实现,例如求和或拼接,但这可能不是最佳选择,这仅仅提供了特征图的固定线性聚合,并且完全不知道这种组合是否适用于特定对象。

特征融合应用:ResNet跳跃连接,多分支并行特征融合(不同感受野),长跳连连接(例如金字塔不同尺度融合)

由于之前的注意力机制例如SENet,直接进行空间维度的池化操作,这种操作只聚焦于图像中的大目标,因为大目标占据的像素多,而小目标可能就会被忽略,为了缓解由尺度变化和小对象引起的问题,作者提倡这样一种想法,即注意力模块应该也应该从不同的感受野中聚合上下文信息,以适应不同尺度对象的特征不一致性。尺度不仅仅是空间注意力的问题,通道注意力也可以具有不同于全局的尺度,通过变化空间池化大小。

首先提出了一个新的注意力机制模块名为MS-CAM

这是一个两分支的注意力机制模块,一个分支就是类似于SEnet,直接在空间维度进行最大池化,这是代表全局信息。另一个分支是不进行降维,直接在原始输入上进行逐点卷积,这个是局部感受野的分支,代表局部信息。第一个分支是全局分支进行通道维度交互,第二个是通道局部维度交互,第一个分支得到的维度是B*C*1*1,第二个分支得到的是和输入一样的形状B*C*H*W

不同特征融合结合这个注意力机制框架如下

X和Y是不同的特征(例如X是3*3卷积得到的特征,Y是7*7卷积得到的特征,X和Y是并行分支),把X和Y相加传入到MS-CAM注意力模块中,输出为一个张量M为B*C*H*W,则X与M逐点相乘,Y与(1-M)逐点相乘,最后相加。

公式可以表示为

其中

表示如何整合X和Y,通常是直接相加。

但是除了注意力模块的设计之外,作为其输入的初始集成方法也对融合权重的质量产生很大影响。考虑到特征可能在尺度和语义水平上存在很大的不一致性,忽视这个问题的不成熟的初始集成策略可能成为一个瓶颈。(通俗的说就是如何初始整合X和Y不好的话,那么注意力机制模块可能也效果不太好),所以只需将现有的特征融合操作替换为所提出的AFF模块。此外,AFF框架支持逐步改进初始集成,即融合权重生成器的输入,通过迭代地将接收到的特征与另一个AFF模块集成,我们将其称为迭代注意力特征融合(iAFF)。

框架图如下:

先将X和Y经过一次上述的AFF操作,得到的初始整合特征,再将整合后的特征再次输入到AFF中。

代码如下,自定义X1,X2测试

import torch.nn as nn
import torch
class DAF(nn.Module):
    '''
    直接相加 DirectAddFuse
    '''

    def __init__(self):
        super(DAF, self).__init__()

    def forward(self, x, residual):
        return x + residual


class iAFF(nn.Module):
    '''
    多特征融合 iAFF
    '''

    def __init__(self, channels=64, r=4):
        super(iAFF, self).__init__()
        inter_channels = int(channels // r)

        # 本地注意力
        self.local_att = nn.Sequential(
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )

        # 全局注意力
        self.global_att = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )

        # 第二次本地注意力
        self.local_att2 = nn.Sequential(
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )
        # 第二次全局注意力
        self.global_att2 = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )

        self.sigmoid = nn.Sigmoid()

    def forward(self, x, residual):
        xa = x + residual
        xl = self.local_att(xa)
        xg = self.global_att(xa)
        xlg = xl + xg
        wei = self.sigmoid(xlg)
        xi = x * wei + residual * (1 - wei)

        xl2 = self.local_att2(xi)
        xg2 = self.global_att(xi)
        xlg2 = xl2 + xg2
        wei2 = self.sigmoid(xlg2)
        xo = x * wei2 + residual * (1 - wei2)
        return xo


class AFF(nn.Module):
    '''
    多特征融合 AFF
    '''

    def __init__(self, channels=64, r=4):
        super(AFF, self).__init__()
        inter_channels = int(channels // r)

        self.local_att = nn.Sequential(
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )

        self.global_att = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )

        self.sigmoid = nn.Sigmoid()

    def forward(self, x, residual):
        xa = x + residual
        xl = self.local_att(xa)
        xg = self.global_att(xa)
        xlg = xl + xg
        wei = self.sigmoid(xlg)
        xo = 2 * x * wei + 2 * residual * (1 - wei)
        return xo


class MS_CAM(nn.Module):
    '''
    单特征 进行通道加权,作用类似SE模块
    '''

    def __init__(self, channels=64, r=4):
        super(MS_CAM, self).__init__()
        inter_channels = int(channels // r)

        self.local_att = nn.Sequential(
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )

        self.global_att = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )

        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        xl = self.local_att(x)
        xg = self.global_att(x)
        xlg = xl + xg
        wei = self.sigmoid(xlg)
        return x * wei

# 创建输入张量 x1 和 x2
x1 = torch.randn(2, 64, 120, 160)
x2 = torch.randn(2, 64, 120, 160)

# 实例化模型
daf_model = DAF()
aff_model = AFF(channels=64, r=4)
iaff_model = iAFF(channels=64, r=4)
ms_cam_model = MS_CAM(channels=64, r=4)

# 计算输出
daf_output = daf_model(x1, x2)
aff_output = aff_model(x1, x2)
iaff_output = iaff_model(x1, x2)
ms_cam_output = ms_cam_model(x1)  # 注意,MS_CAM 只需要一个输入

# 打印输出形状
print('DAF output shape:', daf_output.shape)
print('AFF output shape:', aff_output.shape)
print('iAFF output shape:', iaff_output.shape)
print('MS_CAM output shape:', ms_cam_output.shape)

### 多尺度注意力聚合模块 (MSAA) 的概述 多尺度注意力聚合模块(Multi-Scale Attention Aggregation, MSAA)是一种用于增强深度学习模型性能的技术,特别是在处理图像识别、目标检测和其他视觉任务时表现出色。通过集成不同尺度的感受野信息并利用注意力机制来加权这些特征的重要性,MSAA 能够显著提高模型捕捉复杂模式的能力。 #### 工作原理 - **多尺度感受野**:为了捕获更丰富的空间上下文信息,MSAA 设计了多个分支网络,每个分支负责提取特定尺度下的特征图。这使得模型可以同时关注局部细节以及全局结构[^1]。 - **自适应权重分配**:引入了软选择门控单元(Soft Selective Gating Unit),它基于输入数据动态调整各个尺度特征之间的相对重要性。这种设计允许模型自动学会哪些部分对于当前任务更重要,并给予相应的注意程度[^2]。 - **跨层连接与融合策略**:除了在同一层次上进行多尺度分析外,还采用了跳跃链接或残差路径等方式实现低级到高级语义级别的逐步细化过程。最终,在顶层将所有经过变换后的表征汇总起来作为输出表示形式[^3]。 ```python class MultiScaleAttentionAggregation(nn.Module): def __init__(self, channels): super(MultiScaleAttentionAggregation, self).__init__() # 定义不同的卷积核大小以获取多种尺度的信息 self.branches = nn.ModuleList([ nn.Conv2d(channels, channels, kernel_size=ks, padding=(ks-1)//2) for ks in [3, 5, 7] ]) # 自适应权重分配机制 self.gate_conv = nn.Sequential( nn.Conv2d(3*channels, channels, kernel_size=1), nn.Sigmoid() ) def forward(self, x): branch_outputs = torch.cat([branch(x) for branch in self.branches], dim=1) gate_weights = self.gate_conv(branch_outputs) aggregated_output = branch_outputs * gate_weights return aggregated_output.sum(dim=1).unsqueeze(1) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值