线性代数 行列式与线性方程组

一.行列式(Determinant)
1.方阵A的行列式记为:

det A = |A| = det(A) = det(a~ij) = 1个数

2.性质:

1.det I = 1
2.交换任意2行使行列式值取相反数
  det P = ±1 (取决于行交换次数是奇数还是偶数)
  #任何1种置换要么是奇次,要么是偶次(逆序数) ⇒ 行列式可被性质1,2,3严格定义
3.行列式可以按行/列拆分(每行/列的线性,非整体的线性)
  | a11+b11 a12+b12 ... a1n+b1n |   | a11 a12 ... a1n |   | b11 b12 ... b1n |
  |   ...     ...   ...   ...   | = | ... ... ... ... | + | ... ... ... ... | ≠ det(A + B)
  |   an1     an2   ...   ann   |   | an1 an2 ... ann |   | an1 an2 ... ann |
  按列同理
  3.1.任何1行/列的相同乘数可以提出来
    |  a11   a12  ...  a1n  |       | a11 a12 ... a1n |
    |  ...   ...       ...  |       | ... ...     ... |
    | t*am1 t*am2 ... t*amn | = t * | am1 am2 ... amn |
    |  ...   ...       ...  |       | ... ...     ... |
    |  an1   an2  ...  ann  |       | an1 an2 ... ann |
    列同理
    3.1.1.det(2 * A~n) = 2^n * det(A)
4.如果行列式的某2行/列成比例,行列式为0
  #证明:将成比例的2行/列中的某行/列提出1个公因子,即变为性质6.1
  4.1.当行列式的某2行/列相等,行列式为0
    #证明:交换相等的2行/列 ⇒
          由于行列式不变,值不变;由性质3知值的符号改变 ⇒
          故行列式为0
  4.2.当行列式的某行/列全部元素均为0,行列式为0
5.在某行/列上加/减另1行/列的k倍,行列式不改变
  即:row i ± k * row j,行列式不变 AND col i ± k * col j,行列式不变 (i ≠ j)
  #注意:加/减的不能是本行/列的k倍,否则与性质4矛盾,除非行列式为0
  #使得可以对方阵进行消元而不改变其行列式
  #证明:det([a b.c-l*a d-l*b]) = det([a b,c d]) + det([a b,-l*a -l*b]) = det([a b,c d])
6.矩阵A可逆(Invertible) ⇋ det A ≠ 0 ⇋ A非奇异(Non-Singular)
7.det(A * B) = det A * det B
  7.1.det A^(-1) = 1 / det(A)
    #证明:det[A^(-1) * A] = det I = 1 ⇒
          det A^(-1) * det A = 1 ⇒
          det A^(-1) = 1 / det(A)
  7.2.det(A^2) = (det A)^2
8.det A^T = det A
  #证明:|A^T| = |A| ⇐
        |U^T| * |L| = |L| * |U| ⇐
        ∏(aii) * {- ∏[ai(n-i+1)]} = ∏(aii) * {- ∏[ai(n-i+1)]}
        #也可能均为∏(aii)或{- ∏[ai(n-i+1)]}

3.计算方法
(1)特殊方法:

#对2阶行列式:
A~2 = [a b,c d]
det A~2 = a * d - b * c
  #证明:
    | a b | = | a 0 | + | 0 b | = | a 0 | + | a 0 | + | 0 b | + | 0 b | = | a 0 | + | 0 b | = a * d - b * c
    | c d |   | c d |   | c d |   | c 0 |   | 0 d |   | c 0 |   | 0 d |   | 0 d |   | c 0 |

#对3阶行列式:
A~3 = [a b c,d e f,g h i]
det A~3 = a * e * i + b * f * g + c * d * h - c * e * g - b * d * i - a * f * h
  #证明:
    | a11 a12 a13 |   | a11 0 0 |   | a11 0 0 |   | 0 a12 0 |   | 0 a12 0 |   | 0 0 a13 |   | 0 0 a13 |
    | a21 a22 a23 | = | 0 a22 0 | + | 0 0 a23 | + | a21 0 0 | + | 0 0 a23 | + | a21 0 0 | + | 0 a22 0 |
    | a31 a32 a33 |   | 0 0 a33 |   | 0 a32 0 |   | 0 0 a33 |   | a31 0 0 |   | 0 a32 0 |   | a31 0 0 |
                    = a11 * a22 * a33 - a11 * a23 * a32 - a12 * a21 * a33 + a12 * a23 * a31 + a13 * a21 * a32 - a13 * a22 * a31

#对det U,det L,det D
D~主 = [a11 0 ... 0,0 a22 0 ... 0, ... ,0 ... 0 ann]
det D~主 = ∏(aii)#即主对角线上所有元素的积#或所有主元的积
D~副 = [0 ... 0 a1n,0 ... 0 a2(n-1) 0, ... ,an1 0 ... 0]
det D~副 = - ∏[ai(n-i+1)]#即副对角线上所有元素积的相反数
U~主 = [a11 a12 ... a1n,0 a22 ... a2n,0 0 a33 ... a3n,0 ... 0 ann]
det U~主 = ∏(aii)#即主对角线上所有元素的积#或所有主元的积
  #证明:det U~主 = det D = ∏(aii) * det(I) = ∏(aii)
U~副 = [a11 a12 ... a1n,a21 ... a2(n-1) 0,a31 ... 0 0, ... ,an1 0 ... 0]
det U~副 = - ∏[ai(n-i+1)]#即副对角线上所有元素积的相反数
L~主 = [a11 0 ... 0,a21 a22 0 ... 0, ... , an1 ... ann]
det L~主 = ∏(aii)#即主对角线上所有元素的积#或所有主元的积
L~副 = [0 ... 0 a1n,0 ... 0 a2(n-1) a2n, ... ,an1 ... ann]
det L~副 = - ∏[ai(n-i+1)]#即副对角线上所有元素积的相反数

(2)逆序数(Inversion Number):

在1个排列中,如果1对数的前后位置与大小顺序相反(即num前 > num后),这对数就称为1个逆序
1个排列中逆序的总数称为该排列的逆序数

将(1,2,3,...,n)称为标准排列
某个排列的逆序数即为将该排列转换成标准排列所需要的最小的交换次数

排列(α,β,...,ω)的逆序数记为t(α,β,...,ω)

(3)一般公式:

    | a11 ... a1n |
A = | ... ... ... |
    | an1 ... ann |

det A = Σ{(-1)^[t(α,β,...,ω)] * (a1α * a2β * ... * anω)}
#总共n!项;(α,β,...,ω)是(1,...,n)的某个排列,不得重复

二.余子式
1.余子式和代数余子式(Cofactor):

在n阶行列式中,把(i,j)元a~ij所在的行和列划去后,留下的n-1阶行列式叫(i,j)元a~ij的余子式,记作M~ij
记C~ij = (- 1)^(i + j) * M~ij,C~ij叫(i,j)叫元a~ij的代数余子式

#也有的地方将代数余子式记为A~ij

2.将行列式按行/列展开:

#有矩阵A的行列式D = det A,其各元素对应的代数余子式分别为C~ij
D = ∑(a~1i * C~1i) = Σ(a~i1 * C~i1) (i = 1,2...n)

Σ(a~ip * C~iq) = 0 (i = 1,2...n;p ≠ q)

#D为3阶行列式
D~3 = a11 * (a22 * a33 - a23 * a32) -
      a12 * (a21 * a33 - a23 * a31) +
      a13 * (a21 * a32 - a22 * a31)
#"()"内的部分即为对应元的余子式,加上'±'即为对应元的代数余子式

3.三对角线矩阵(Tri-Diagonal Determinant)

     | 1 1 0 0 ... 0 |
     | 1 1 1 0 ... 0 |
     | 0 1 1 1 ... 0 |
|T| =| 0 0 1 1 ... 0 |
     | ... ... ... . |
     | 0 0 ... 1 1 1 |
     | 0 0 ... 0 1 1 |

可证得:|T~n| = |T~(n-1)| - |T~(n-2)|
故|T~1| = 1,|T~2| = 0,|T~3| = -1,|T~4| = -1,
  |T~5| = 0,|T~6| = 1,|T~7| = 1
即:|T~(6k+1)| = 1,|T~(6k+2)| = 0,|T~(6k+3)| = -1,
   |T~(6k+4)| = -1,|T~(6k+5)| = 0,|T~(6k)| = 1 (k = 0,1...)

4.伴随矩阵(Cofactor Matrix):
(1)定义:

A的伴随矩阵的元素a~ij等于A的代数余子式C~ji
  #注意行/列号要互换
即:A = [a11 ... a1n,a21 ... a2n,...,an1 ... ann]
A的伴随矩阵记为A* = [C~11 C~12 ... C~1n,C~21 ... C~2n,...,C~n1 ... C~nn]^T
                 = [C~11 C~21 ... C~n1,C~12 ... C~n2,...,C~1n ... C~nn]

#也有将伴随矩阵记为C^T的

#对2阶行列式:主对换,逆变号
A~2 = [a b,c d]
A*~2 = [d -b,-c a]

(2)利用A*求A^(-1):

  如果A可逆,A^(-1) = A* / |A|
    #2阶:[a b,c d]^(-1) = [d -b,-c a] / (a * d - b * c)
  #即高斯-约尔当消元法的代数表示
  #证明:A * A* = [a11 ... a1n,...,an1 ... ann] * [C11 ... C~n1,...,C~1n ... C~nn]
               = [det A  0 ... 0,0 det A ... 0,...,0 ... det A]
               = det A * I ⇒
        A^(-1) = A* / |A|

三.克拉默法则(也称克莱姆法则;Cramer’s Rule)

  • 在计算上非常低效:与具有多项式时间复杂度的消除方法相比,其渐近的复杂度为O(n·n!)
存在方程A * x = b
当A可逆(即有效方程个数 = 未知数个数):
x = A^(-1) * b = [(A*) * b] / |A|
#相当于下图:

在这里插入图片描述
在这里插入图片描述
四.利用行列式求"体积":

        | a11 ... a1n | --> 该行记为α1
det A = | ... ... ... | ...
        | an1 ... ann | --> 该行记为αn
box:以向量α1...αn为从1组边的n维平行柱体
|det A| = V~box (V表示n维平行柱体的"体积")
  #如:n = 2,为平行四边形的面积;n = 3,为平行六面体的体积
det A的符号表示柱体的方向(即左手系/右手系)

#以3维为例:
        | a11 a12 a13 | --> 记为α1
det A = | a21 a22 a23 | --> 记为α2
        | a31 a32 a33 | --> 记为α3
|det A| = V~box (见下图1) = [α1 α2 α3] (3个向量的混合积)
  #证明:det A = a11 * a22 * a33 + a12 * a23 * a31 + a13 * a21 * a32 -
                a13 * a22 * a31 - a12 * a21 * a33 - a11 * a23 * a32
        [α1 α2 α3] = (a12 * a23 - a13 * a22,a13 * a21 - a11 * a23,a11 * a22 - a12 * a21) * (a31,a32,a33)
                   = det A

#以I为例:
      | 1 0 ... 0 |
      | 0 1 ... 0 |
|I| = | ......... |
      | 0 ... 1 0 |
      | 0 ... 0 1 |
|det I| = 1 (见下图2,以I~3为例)
  #再利用行列式性质证明一般情况

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值