数学分析 实数与函数(第1,7章)

一.实数理论
1.实数
(1)定义:

有理数和无理数统称实数;其中有理数可用分数形式 p q \frac{p}{q} qp(p,q∈Z,q≠0)表示,也可用有限10进制小数/无限10进制循环小数表示;而无限10进制不循环小数称为无理数

(2)实数的无限小数表达式:

  • 又称为正规表示,作用是把有限小数也表示为无限小数
  • 这种表示是唯一的

对正有限小数(包括正整数)x,当x=a0.a1···an(0≤ai≤9,ai∈Z,i=1,2···n,an≠0,a0为非负整数)时,记x=a0.a1···(an-1)999···
特别地,当x=a0为正整数时,记x=(a0-1).999···
例如:2.001记为2.000999···

对于负有限小数(包括负整数)y,则先将-y表示为无限小数,再在所得的无限小数前加负号
例如:-8记为-7.999···

规定数0表示为0.000···

(3)不足近似与过剩近似:

设x=a0.a1···an···为非负实数,称有理数xn=a0.a1···an为x的n位不足近似,而有理数 x − \stackrel{\mathrm{-}}{x} xn=xn+( 1 10 \frac{1}{10} 101)n称为x的n位过剩近似(n=0,1···)

对于负实数x=-a0.a1···an···,其n位不足近似与过剩近似分别规定为xn=-a0.a1···an-( 1 10 \frac{1}{10} 101)n x − \stackrel{\mathrm{-}}{x} xn=-a0.a1···an

当n增大时,xn不减,即x0≤x1≤···; x − \stackrel{\mathrm{-}}{x} xn不增,即 x − \stackrel{\mathrm{-}}{x} x0 x − \stackrel{\mathrm{-}}{x} x1≥···

2.实数的大小关系
(1)定义:

对非负实数x=-a0.a1···an···与y=-b0.b1···bn···,(a0,b0为非负整数,0≤ak,bk≤9,ak,bk∈Z,k=1.2···),若有ak=bk(k=0,1···),则称x与y相等,记作x=y;若a0>b0或∃非负整数L使ak=bk(k=0,1···L)而aL+1>bL+1,则称x大于y或y小于x,记作x>y或y<x

对负实数x,y,若按上述规定有-x=-y与-x>-y,则分别称x=y与x<y(或y>x)

规定∀非负实数大于∀负实数

(2)命题:

设x=-a0.a1···an···与y=-b0.b1···bn···为2个实数,则x>y等价于:∃非负整数n,使xn> y − \stackrel{\mathrm{-}}{y} yn

3.实数与实数集的性质:

记全体实数构成的集合为实数集,记为R

1.R对四则运算是封闭的,即∀2个实数的和/差/积/商(除数不为0)仍是实数
1.1有理数集和复数集对四则运算也是封闭的
2.实数集是有序的,即∀2个实数a,b必满足且只满足下述3个关系之一:a<b,a=b,a>b
3.实数的大小关系具有传递性,即a>b,b>c⇒a>c
4.实数具有阿基米德性(又称阿基米德公理,Archimedes Axiom),即对∀a,b∈R,若b>a>0,则∃∈Z+,使na>b
5.R具有稠密性,即∀2个不相等的实数间必有其他实数,且既有有理数,又有无理数
6.R与数轴上的点间存在一一对应关系,这反映了实数的完备性

4.绝对值
(1)定义:

实数a的绝对值记为|a|,定义为|a|=a(a≥0)或|a|=-a(a<0)

从数轴上看,|a|就是a到原点O的距离

(2)性质:

1.|a|=|-a|
2.当且仅当a=0时有|a|=0
3.-|a|≤a≤|a|
4.|a|<h⇔-h<a<h,|a|≤h⇔-h≤a≤h(h>0)
在这里插入图片描述

5.对∀a,b∈R,有|a|-|b|≤|a±b|≤|a|+|b|(三角不等式)
6.|ab|=|a||b|
7.| a b \frac{a}{b} ba|= ∣ a ∣ ∣ b ∣ \frac{|a|}{|b|} ba(b≠0)

二.数集
1.区间
(1)区间:

设a,b∈R,称数集{x|a<x<b}为开区间,记为(a,b);称数集{x|a≤x≤b}为闭区间,记为[a,b];称数集{x|a<x≤b}和{x|a≤x<b}为半开半闭区间,记为(a,b]和[a,b);以上几类区间统称有限区间

满足关系式x≥a的全体实数的集合记作[a,+∞);类似地,有(-∞,a],(-∞,a),(a,+∞);以上几类区间统称无限区间

有限区间和无限区间统称区间

(2)邻域:

设a∈R,ζ>0,满足|x-a|<ζ的全体实数的集合称为点a的ζ邻域,记为U(a;ζ)或U(a),即有U(a;ζ)={x||x-a|<ζ}=(a-ζ,a+ζ);a的空心邻域(去心邻域)定义为U°(a;ζ)={x|0<|x-a|<ζ};a的右邻域U+(a;ζ)=[a,a+ζ),简记为U+(a);a的左邻域U-(a;ζ)=(a-ζ,a],简记为U-(a);a的左去心邻域U°-(a;ζ)=(a-ζ,a),简记为U°-(a);a的右去心邻域U°+(a;ζ)=(a,a+ζ),简记为U°+(a)

∞邻域U(∞)={x||x|>M},其中M为充分大的正数(下同);+∞邻域U(+∞)={x|x>M};-∞邻域U(-∞)={x|x<-M}

2.有界集
(1)定义:

设S为R中的1个数集,若∃数M(L),使对一切x∈S,都有x≤M(x≥L),则称S有上界(下界),M(L)为S的1个上界(下界)

若S既有上界又有下界,则称S为有界集;若S不是有界集,则称S为无界集

(2)确界:

设S为R中的1个数集,若数η满足:①对∀x∈S,有x≤η ②对∀α<η,∃x0∈S,使x0>α,即η是S的最小上界;则称η为S的(正常)上确界,记作η=sup S
设S为R中的1个数集,若数ξ满足:①对∀x∈S,有x≥ξ ②对∀β>ξ,∃x0∈S,使x0>β,即ξ是S的最大下界;则称η为S的(正常)下确界,记作ξ=inf S
上确界和下确界合称确界

如果上(下)确界∃,则必定唯一;若S∃上确界和下确界,则inf S≤sup S
S的确界可能属于也可能不属于S

(3)确界原理(定理1.1):

设S为非空数集,若S有上界,则S必有上确界;若S有下界,则S必有下确界
在这里插入图片描述

在这里插入图片描述

(4)推广确界与确界原理:

若把±∞补充到实数集中,并规定∀实数a与之的关系为:a<+∞,a>-∞,-∞<+∞,则确界可扩充为:若数集S无上界,则定义+∞为S的非正常上确界,记sup S=+∞;若S无下界,则定义-∞为S的非正常下确界,记inf S=-∞

∀非空数集必有上下确界(正常的或非正常的)

三.函数
1.映射:

如果2个集合A与B间存在着对应法则 f f f,使得对于A中的每个元素a,在B中总∃唯一的1个元素b与之对应,就称 f f f为从A到B的1个映射,记作 f : A → B f:A→B f:AB
其中,b称为a在 f f f下的,记作 b = f ( a ) b=f(a) b=f(a);a称为b在 f f f下的1个原像
集合A称为映射 f f f定义域(domain),集合B称为映射 f f f陪域(codomain,或上域,或到达域)
A中所有元素的像的集合称为映射 f f f值域(range,或像集),记作 f ( A ) = { f ( a ) ∣ a ∈ A } 或 I m f f(A)=\{f(a)|a∈A\}或Im f f(A)={f(a)aA}Imf

如果 f ( A ) = B f(A)=B f(A)=B,则称 f f f为1个满射;如果A中不同元素在 f f f下的像不同,则称 f f f为1个单射;如果 f f f既是单射又是满射,则称 f f f为1个双射(或一一对应)

如果映射 f , g f,g f,g的定义域/对应法则/陪域都相同,则称这2个映射相等,记作 f = g f=g f=g

2.函数定义:

给定2个数集D和M,若有对应法则f,使对∀x∈D,都有唯一的y∈M与之对应,则称f是定义在D上的函数,记作f:D→M;D称为函数f的定义域,x对应的y称为f在x处的函数值,常记为f(x);全体函数值的集合f(D)称为f的值域;x称为自变量,y称为因变量

注意:
①M常用R来代替,因此D和f是确定函数的2个主要因素,所以,常用y=f(x)(x∈D)表示1个函数;2个函数相同,指的是它们拥有相同的D和f(对应法则而非法则的表达形式),如f(x)=1和g(x)=1(x>0)不同,而φ(x)=|x|和ρ(x)= x 2 \sqrt {x^2} x2 相同
②D常取使函数有意义的自变量的全体,称为存在域,此时D可省略
③f给出了D到M的单值对应,也称映射,对于a∈D,f(a)为映射f下a的象,a称为f(a)的1个原象
④对每个x∈D,如果只有1个y与之对应,这样的函数称为单值函数;如果可以有多个y与之对应,称为多值函数;后文的函数均指单值函数
⑤严格来说D可以不是数集,而是其他集合(如点集),但之后讨论的都是定义在数集上的函数
⑥暂时不考虑定义域为空集的函数(称为空函数)
可证明空函数是单射;但在 M ≠ Φ M≠Φ M=Φ时,空函数不是满射;因此空函数不是双射

3.分段函数:

指那些在定义域发不同部分用不同的公式表达的函数,如:
s g n x = { 1 ( x > 0 ) 0 ( x = 0 ) − 1 ( x < 0 ) sgnx= \begin{cases} 1\quad&(x>0)\\ 0\quad&(x=0)\\ -1\quad&(x<0) \end{cases} sgnx=101(x>0)(x=0)(x<0)
该函数称为符号函数

4.函数的四则运算:
在这里插入图片描述
在这里插入图片描述
5.复合函数:
在这里插入图片描述
6.反函数:
在这里插入图片描述
在这里插入图片描述
7.初等函数
(1)基本初等函数:

基本初等函数包括:
①常量函数:y=c(c为常数)
②幂函数:y=xα(α为实数)
③指数函数:y=ax(a>0,a≠1)
④对数函数:y=logax(a>0,a≠1)
⑤三角函数:y=sin x,y=cos x,y=tan x,y=cot x
⑥反三角函数:y=arcsin x,y=arccos x,y=arctan x,y=arccot x

(2)扩展幂函数与指数函数的定义:
在这里插入图片描述
(3)初等函数:

由基本初等函数经过有限次四则运算与复合运算所得的函数,称为初等函数;其他函数统称为非初等函数,如狄利克雷函数与黎曼函数
在这里插入图片描述

四.某些具有特殊性质的函数
1.有界函数:
在这里插入图片描述
2.单调函数:
在这里插入图片描述

定理1.2:设y=f(x)(x∈D)为严格增(减)函数,则f必有反函数f-1,且f-1在其定义域f(D)上也是严格增(减)函数
在这里插入图片描述

3.奇函数与偶函数:
在这里插入图片描述
4.周期函数:
在这里插入图片描述
四.实数的完备性
1.实数集完备性的基本定理
在这里插入图片描述
(1)区间套定理:

在这里插入图片描述

定理7.1:若 { [ a n , b n ] } \{[a_n,b_n]\} {[an,bn]}是1个区间套,则在实数系中∃唯一1点 ξ \xi ξ,使得 ξ ∈ [ a n , b n ] ( n = 1 , 2... ) \xi∈[a_n,b_n](n=1,2...) ξ[an,bn](n=1,2...),即 a n ≤ ξ ≤ b n ( n = 1 , 2... ) a_n≤\xi≤b_n(n=1,2...) anξbn(n=1,2...)
在这里插入图片描述
在这里插入图片描述
各区间均为闭区间时,才能保证该定理成立;对开区间列,可能不成立,如对 { ( 0 , 1 n ) } \{(0,\frac{1}{n})\} {(0,n1)}就不成立

推论:若 ξ ∈ [ a n , b n ] ( n = 1 , 2... ) \xi∈[a_n,b_n](n=1,2...) ξ[an,bn](n=1,2...)是区间套 { [ a n , b n ] } \{[a_n,b_n]\} {[an,bn]}确定的点,则对 ∀ ε > 0 , ∃ N > 0 , ∀ε>0,∃N>0, ε>0,N>0,使当 n > N n>N n>N,有 [ a n , b n ] ⊂ U ( ξ ; ε ) [a_n,b_n]\subset U(\xi;ε) [an,bn]U(ξ;ε)

用定理7.1推出连续函数根的存在性定理:
在这里插入图片描述

(2)魏尔斯特拉斯聚点定理(Weierstrass Accumulative Point Principle):

在这里插入图片描述
聚点的另2个等价定义如下:
在这里插入图片描述

定理7.2:实轴上的∀有界无限点集S至少有1个聚点
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(3)海涅-博雷尔有限覆盖定理(Heine-Borel Theorem):
在这里插入图片描述

定理7.3:设H为[a,b]上的1个无限开覆盖,则从H中可选出有限个开区间来覆盖[a,b]
在这里插入图片描述
该定理仅对闭区间[a,b]成立,对开区间不一定成立;如开区间集合 ( 1 n + 1 , 1 ) ( n = 1 , 2... ) 和 开 区 间 ( 0 , 1 ) {(\frac{1}{n+1},1)}(n=1,2...)和开区间(0,1) (n+11,1)(n=1,2...)(0,1)

用定理7.3证明闭区间上连续函数的有界性定理:
在这里插入图片描述
在这里插入图片描述

(4)实数完备性基本定理间的等价性:
参见:
http://www.360doc.com/document/18/0319/21/32929879_738532695.shtml

在实数系中有关实数完备性的6个基本定理是等价的,可从其中任何1个推出另外5个
1⇒2:见 极限.一.5.(2) 部分,即定理2.9的证明
2⇒3:见 四.1.(1) 部分,即定理7.1的证明
3⇒4:见 四.1.(3) 部分,即定理7.3的证明
4⇒5:
在这里插入图片描述
6⇒1:
在这里插入图片描述
在这里插入图片描述

2.上极限与下极限
(1)数列的聚点:
在这里插入图片描述

注1:此处仍然不区分实数与实数轴上的点,因此点列的聚点等同于数列的聚点,数列或点列的聚点也称极限点

(2)定理7.4:

有界点列(或数列){xn}至少有1个聚点,且存在最大聚点和最小聚点
在这里插入图片描述

(3)上极限与下极限:

在这里插入图片描述
在这里插入图片描述
定理7.5:对任何有界数列{xn},有 lim ⁡ n → ∞ ‾ x n ≤ lim ⁡ n → ∞ ‾ x n \overline{\displaystyle\lim_{n \to \infty}}{x_n}≤\displaystyle\lim_{\overline{n \to \infty}}{x_n} nlimxnnlimxn
定理7.6: lim ⁡ n → ∞ x n = A \displaystyle\lim_{n \to \infty}{x_n}=A nlimxn=A的充要条件是: lim ⁡ n → ∞ ‾ x n = lim ⁡ n → ∞ ‾ x n = A \overline{\displaystyle\lim_{n \to \infty}}{x_n}=\displaystyle\lim_{\overline{n \to \infty}}{x_n}=A nlimxn=nlimxn=A

(4)上(或下)极限的判定:

定理7.7:设{xn}为有界数列:
(Ⅰ) A ‾ \overline{A} A为{xn}上极限的充要条件是:对∀ε>0,①∃N>0,使当n>N,有 x n < A ‾ + ε x_n<\overline{A}+ε xn<A+ε ②∃子列 x n k , x n k > A ‾ − ε ( k = 1 , 2... ) {x_{n_k}},x_{n_k}>\overline{A}-ε(k=1,2...) xnk,xnk>Aε(k=1,2...)
(Ⅱ) A ‾ \underline{A} A为{xn}下极限的充要条件是:∀ε>0,①∃N>0,使当n>N,有 x n > A ‾ − ε x_n>\underline{A}-ε xn>Aε ②∃子列 x n k , x n k < A ‾ + ε ( k = 1 , 2... ) {x_{n_k}},x_{n_k}<\underline{A}+ε(k=1,2...) xnk,xnk<A+ε(k=1,2...)
在这里插入图片描述
定理7.7’(定理7.7的另1种形式):设{xn}为有界数列:
(Ⅰ) A ‾ \overline{A} A为{xn}上极限的充要条件是:对 ∀ α > A ‾ ∀α>\overline{A} α>A,{xn}中大于α的项至多有有限个;对 ∀ β < A ‾ ∀β<\overline{A} β<A,{xn}中大于β的项有无限多个
(Ⅱ) A ‾ \underline{A} A为{xn}下极限的充要条件是:对 ∀ β < A ‾ ∀β<\underline{A} β<A,{xn}中小于β的项至多有有限个;对 ∀ α > A ‾ ∀α>\overline{A} α>A,{xn}中小于α的项有无限多个

定理7.9:设{xn}为有界数列:
(Ⅰ) A ‾ \overline{A} A是{xn}上极限的充要条件是: A ‾ = lim ⁡ n → ∞ s u p { x k } ( k ≥ n ) \overline{A}=\displaystyle\lim_{n \to \infty}{sup\{x_k\}}(k≥n) A=nlimsup{xk}(kn)
(Ⅱ) A ‾ \underline{A} A是{xn}下极限的充要条件是: A ‾ = lim ⁡ n → ∞ i n f { x k } ( k ≥ n ) \underline{A}=\displaystyle\lim_{n \to \infty}{inf\{x_k\}}(k≥n) A=nliminf{xk}(kn)
有些教材上使用上述2式作为上极限和下极限的定义

(5)上(或下)极限的性质:

上(或下)极限的保不等式性(定理7.8):设有界数列{an},{bn}满足:∃N0>0,当n>N0时有an≤bn,则 lim ⁡ n → ∞ ‾ a n ≤ lim ⁡ n → ∞ ‾ b n , lim ⁡ n → ∞ ‾ a n ≤ lim ⁡ n → ∞ ‾ b n \overline{\displaystyle\lim_{n \to \infty}}{a_n}≤\overline{\displaystyle\lim_{n \to \infty}}{b_n},\displaystyle\lim_{\overline{n \to \infty}}{a_n}≤\displaystyle\lim_{\overline{n \to \infty}}{b_n} nlimannlimbn,nlimannlimbn特别地,若α,β为常数,又∃N0>0,当n>N0时有α≤an≤β,则 α ≤ lim ⁡ n → ∞ ‾ a n ≤ lim ⁡ n → ∞ ‾ a n ≤ β α≤\displaystyle\lim_{\overline{n \to \infty}}{a_n}≤\overline{\displaystyle\lim_{n \to \infty}}{a_n}≤β αnlimannlimanβ

定理7.10:设{an},{bn}为有界数列,则: lim ⁡ n → ∞ ‾ ( a n + b n ) ≤ lim ⁡ n → ∞ ‾ a n + lim ⁡ n → ∞ ‾ b n \overline{\lim_{n\to\infty}}{(a_n+b_n)}≤\overline{\lim_{n\to\infty}}{a_n}+\overline{\lim_{n\to\infty}}{b_n} nlim(an+bn)nliman+nlimbn特别地,若 lim ⁡ n → ∞ a n ( 1 ) \displaystyle{\lim_{n\to\infty}}{a_n}\qquad(1) nliman(1)存在,则: lim ⁡ n → ∞ ‾ ( a n + b n ) = lim ⁡ n → ∞ ‾ a n + lim ⁡ n → ∞ ‾ b n = lim ⁡ n → ∞ a n + lim ⁡ n → ∞ ‾ b n ( 2 ) \overline{\lim_{n\to\infty}}{(a_n+b_n)}=\overline{\lim_{n\to\infty}}{a_n}+\overline{\lim_{n\to\infty}}{b_n}=\lim_{n\to\infty}{a_n}+\overline{\lim_{n\to\infty}}{b_n}\qquad(2) nlim(an+bn)=nliman+nlimbn=nliman+nlimbn(2)
在这里插入图片描述

(6)非正常上(或下)极限:

若该定义中的a允许是非正常点±∞,则定理7.4可扩充为:任一点列(或数列){xn}至少有1个聚点,且存在最大聚点和最小聚点

无上(下)界点列的最大(小)聚点为+∞(-∞),故无上(下)界点列有非正常上(下)极限+∞(-∞),

对非正常上(或下)极限,定理7.5-7.9也成立(其中定理7.7需要修改)

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值