Python 第三方模块 机器学习 Scikit-Learn模块 其他

本文主要介绍了Python中用于机器学习的Scikit-Learn模块,详细讲解了utils子模块的功能和常用函数,包括数组处理、矩阵操作以及joblib库的一些实用工具。同时,文章还提及了experimental模块的基本概念和应用。
摘要由CSDN通过智能技术生成

一.utils
1.简介
(1)功能:

该模块包含各种实用程序

(2)导入:

#各个子模块均需独立导入:
from sklearn.utils import arrayfuncs

2.类:

以键作为属性的类字典对象:class sklearn.utils.Bunch([**kwargs])

#实例:
>>> b=utils.Bunch(a=1,b=2)
>>> b
{
   'a': 1, 'b': 2}
>>> b["a"]
1
>>> b.a
1
>>> b.c=3
>>> b["c"]
3
>>> b.c
3

######################################################################################################################

将函数/类标记为不推荐使用的装饰器:class sklearn.utils.deprecated([extra=''])
  #参数说明:
	extra:指定弃用信息;str

3.函数
(1)数组函数:

寻找最小的正值:[<min_p>]sklearn.utils.arrayfuncs.min_pos(<X>)
  #参数说明:
    X:指定数组;float np.array
    min_p:返回最小正值;float

######################################################################################################################

将array-like转换为float array:[<XT>=]sklearn.utils.as_float_array(<X>[,copy=True,force_all_finite=True])
  #参数说明:
	X:指定原数据;为array-like/sparse matrix
	copy:指定是否必然创建<X>的副本;bool
	  #若为False,当<X>的元素不为float时仍可能返回副本
	force_all_finite:指定是否接受非有限值;True(均不接受)/False(接受np.inf,np.nan,pd.NA)/"allow-nan"(接受np.nan,pd.NA)
	XT:返回结果;float np.array/float sparse matrix

######################################################################################################################

查看是否包含非有限值:[None=]sklearn.utils.assert_all_finite(<X>[,allow_nan=False])
  #若包含,则引发ValueError;否则,返回None
  #参数说明:<X>同sklearn.utils.as_float_array()
    allow_nan:指定是否接受Nan;bool

(2)检查函数:

"标准估计器"(standard estimators)的输入进行检查:[<X_converted>,<y_converted>=]sklearn.utils.check_X_y(<X>,<y>[,accept_sparse=False,accept_large_sparse=True,dtype='numeric',order=None,copy=False,force_all_finite=True,ensure_2d=True
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值