一.utils
1.简介
(1)功能:
该模块包含各种实用程序
(2)导入:
#各个子模块均需独立导入:
from sklearn.utils import arrayfuncs
2.类:
以键作为属性的类字典对象:class sklearn.utils.Bunch([**kwargs])
#实例:
>>> b=utils.Bunch(a=1,b=2)
>>> b
{
'a': 1, 'b': 2}
>>> b["a"]
1
>>> b.a
1
>>> b.c=3
>>> b["c"]
3
>>> b.c
3
######################################################################################################################
将函数/类标记为不推荐使用的装饰器:class sklearn.utils.deprecated([extra=''])
#参数说明:
extra:指定弃用信息;为str
3.函数
(1)数组函数:
寻找最小的正值:[<min_p>]sklearn.utils.arrayfuncs.min_pos(<X>)
#参数说明:
X:指定数组;为float np.array
min_p:返回最小正值;为float
######################################################################################################################
将array-like转换为float array:[<XT>=]sklearn.utils.as_float_array(<X>[,copy=True,force_all_finite=True])
#参数说明:
X:指定原数据;为array-like/sparse matrix
copy:指定是否必然创建<X>的副本;为bool
#若为False,当<X>的元素不为float时仍可能返回副本
force_all_finite:指定是否接受非有限值;为True(均不接受)/False(接受np.inf,np.nan,pd.NA)/"allow-nan"(接受np.nan,pd.NA)
XT:返回结果;为float np.array/float sparse matrix
######################################################################################################################
查看是否包含非有限值:[None=]sklearn.utils.assert_all_finite(<X>[,allow_nan=False])
#若包含,则引发ValueError;否则,返回None
#参数说明:<X>同sklearn.utils.as_float_array()
allow_nan:指定是否接受Nan;为bool
(2)检查函数:
对"标准估计器"(standard estimators)的输入进行检查:[<X_converted>,<y_converted>=]sklearn.utils.check_X_y(<X>,<y>[,accept_sparse=False,accept_large_sparse=True,dtype='numeric',order=None,copy=False,force_all_finite=True,ensure_2d=True