ADAS(Advanced Driver Assistance Systems,高级驾驶辅助系统)是通过传感器、算法与车辆控制系统的协同,在特定场景下辅助驾驶员提升安全性与舒适性的技术集合。作为L1-L2级自动驾驶的核心,ADAS正逐步向L3+演进,其发展深度关联汽车智能化进程。以下从技术架构、核心功能、行业挑战与未来趋势展开解析:
一、ADAS的技术架构
- 传感器配置与融合
- 感知层:
- 摄像头:单目/多目视觉系统(如特斯拉8摄像头阵列),用于车道线识别、交通标志检测。
- 毫米波雷达:77GHz前向雷达实现ACC(自适应巡航)与AEB(自动紧急制动)。
- 激光雷达(可选):L2+车型(如小鹏G9)补充点云数据,增强障碍物检测精度。
- 超声波雷达:低速泊车场景(APA自动泊车)测距。
- 融合策略:
- 前融合:原始数据级融合(如Waymo Multimodal Fusion),提升感知鲁棒性。
- 后融合:目标级融合(如Mobileye EyeQ6),降低计算负载。
- 决策与控制
- ECU(电子控制单元):
- 域控制器:NVIDIA DRIVE Orin、华为MDC 610等提供30+ TOPS算力,支持多任务并行处理。
- 算法栈:
- 路径规划:基于MPC(模型预测控制)的车道居中(LCC)。
- 行为决策:规则引擎(IF-THEN)与机器学习(如Q-Learning)结合,处理Cut-in场景。
- 执行机构
- 线控系统:
- 线控制动(ESP):博世iBooster实现毫秒级响应,支持AEB精准触发。
- 线控转向(SBW):丰田bZ4X配备可变传动比转向,适应自动泊车需求。
二、ADAS的核心功能场景
三、ADAS开发与验证流程
- 数据驱动开发
- 场景库构建:
- 自然驾驶数据:采集真实道路数据(如Mobileye RSS模型覆盖1000万公里)。
- 合成数据:CARLA、Prescan生成极端场景(如横穿行人、施工区)。
- 算法训练:
- 监督学习:标注数据训练目标检测模型(YOLOv7、BEVFormer)。
- 强化学习:仿真环境中优化变道策略(如Waymo Carcraft)。
- 测试验证
- 在环测试:
- MIL(模型在环):Simulink验证控制算法逻辑。
- HIL(硬件在环):dSPACE平台模拟传感器输入,测试ECU响应。
- 道路测试:
- 覆盖度要求:ISO 21448(SOTIF)要求验证已知不安全场景与未知场景。
四、行业挑战与解决方案
- 技术瓶颈
- 极端场景泛化:
- 问题:暴雨中摄像头性能衰减,雷达误检静止物体(如高架桥金属牌)。
- 解法:多模态冗余(激光雷达补盲)+在线标定(动态校准外参)。
- 实时性保障:
- 问题:复杂路口决策延迟导致接管。
- 解法:边缘计算(如特斯拉FSD芯片本地推理)+时间敏感网络(TSN)。
- 成本与商业化
- 降本路径:
- 硬件:4D毫米波雷达替代低线数激光雷达(如傲酷EAGLE前向雷达)。
- 软件:OTA升级解锁功能(如蔚来按月订阅NOP+)。
- 商业模式:
- 标配化:丰田TSS 3.0全系搭载,提升基础安全功能普及率。
- 法规与标准
- 全球认证:
- 欧盟NCAP将AEB、LCC纳入评分体系,倒逼车企提升ADAS性能。
- 中国《汽车驾驶自动化分级》明确L2级功能责任归属驾驶员。
- 数据合规:
- GDPR要求匿名化处理车载摄像头采集的人脸/车牌信息。
五、未来趋势
-
AI大模型赋能:
- 端到端感知:特斯拉FSD V12采用纯视觉BEV+Transformer,减少规则代码依赖。
- 场景理解:多模态大模型(如DriveGPT)实现复杂路口意图预测。
-
车路协同(V2X):
- 5G-V2X:路侧单元(RSU)推送红绿灯相位、盲区行人信息,弥补单车感知局限。
- 中国实践:百度Apollo与广州合作智能交通示范区,降低ADAS误触发率。
-
渐进式演进至L3:
- 功能升级:奔驰DRIVE PILOT在特定高速路段允许驾驶员脱手脱眼。
- 系统冗余:双制动/转向系统(如蔚来ET7)满足ASIL-D功能安全。
-
用户体验重构:
- 交互设计:AR-HUD投影导航路径(如大众ID.7),语音助手主动预警(如小鹏全场景语音)。
六、典型案例
- 特斯拉Autopilot:
- 纯视觉路线:8摄像头+神经网络实现L2+功能,影子模式持续优化算法。
- 争议点:对静态障碍物(如翻覆卡车)识别仍存局限。
- 华为ADS 2.0:
- 无高精地图:通过BEV+Transformer实现城市NCA(深圳、上海)。
- 核心优势:激光雷达与GOD网络(通用障碍物检测)应对中国复杂路况。
- Mobileye SuperVision:
- 高性价比方案:11摄像头+EyeQ6芯片,支持L2级功能(极氪001搭载)。
关键问题探讨
- 人机共驾边界:L2级系统如何避免驾驶员过度依赖辅助功能?
- 责任界定:AEB误触发导致追尾,责任归属OEM还是驾驶员?
- 数据闭环:如何平衡数据采集效率与用户隐私保护?
ADAS正在从“功能叠加”转向“体验重构”,其技术突破与商业落地将深刻影响汽车产业竞争格局。若需深入特定功能(如AEB算法优化)、传感器技术(4D雷达vs激光雷达)或区域市场(欧洲NCAP法规影响),可进一步细化分析!