论文:Objects as Points
论文链接:https://arxiv.org/pdf/1904.07850.pdf
论文代码:https://github.com/xingyizhou/CenterNet
文章目录
CenterNet 是 anchor-free 的目标检测经典算法,今天我们就一起来分析分析这个算法。代表性的二阶段和一阶段目标检测算法如 Faster-rcnn 和 Yolo 都是 anchor-based 算法,即先在特征图上生成 anchor box,随后调整这些anchor box 的位置和尺寸生成最后的预测值。而本文提出单阶段的 anchor-free 目标检测算法,无需事先生成 anchor。下面我们开始今天的正题!
1 为什么要提出 CenterNet ?
之前目标检测算法有如下不足:
- anchor-based 的目标检测算法难以端到端训练:一个目标会对应多个anchor box,需要使用后处理 NMS 抑制掉重复的 box,这种后处理是难以微分的, 因而大多数检测器不是端到端的训练。
- 基于滑动窗口的目标检测算法,需要计算所有可能的目标位置和尺寸,运算冗余。
CenterNet 做了如下改进:
-
每个目标使用 bbox中心点表示,目标尺寸、方位、姿态等其他属性,从位于中心位置的图像特征回归得到。
-
将图片输入到全卷积网络中生成heatmap,heatmap的峰值位置对应着物体的中心。
-
在推断时,只要做一次前向传播,无需NMS后处理。
2 CenterNet 网络框架
CenterNet 是一种单阶段目标检测算法,该算法网络框架如下所示:
- 输入端 — 输入端表示输入的图片。该网络的输入图像大小 W W W 和 H H H 为为512,该阶段通常包含一个图像预处理阶段,对图片进行随机翻转,随机缩放(0.6~1.3倍),图片裁剪和颜色增强。
- 基准网络 — 基准网络用来提取图片特征。论文分别试验了ResNet-18,ResNet-101,DLA-34和 Hourglass-104。
- Head输出端 — Head用来完成目标检测结果的输出。输出端的分支有3个,分别为 heatmap、offset和size,对应的输出尺度为( W / R W/R W/R, H / R H/R H/R, C C C)、( W / R W/R W/R, H / R H/R H/R, 2 2 2) 和( W / R W/R W/R, H / R H/R H/R, 2 2 2),其中 R R R 为 stride,论文中取4, C C C 为目标种类。
3 CenterNet 实现细节
3.1 什么是关键点 heatmap?
对于每个标签图(ground truth
)中的某一 类
c
c
c,其 bbox
标签为
(
x
1
,
y
1
,
x
2
,
y
2
)
(x_1,y_1,x_2,y_2)
(x1,y1,x2,y2),则关键点坐标为:
p
=
(
x
1
+
x
2
2
,
y
1
+
y
2
2
)
p=\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2} \right)
p=(2x1+x2,2y1+y2)
计算得到低分辨率(经过下采样)上对应的关键点:
p
~
=
(
p
~
x
,
p
~
y
)
=
⌊
p
R
⌋
\widetilde p=(\widetilde p_x,\widetilde p_y)=\lfloor \frac {p}{R}\rfloor
p
=(p
x,p
y)=⌊Rp⌋
R
R
R 为下采样因子,论文采用下采用数为
R
=
4
R=4
R=4 。进一步将 GT 关键点通过高斯核分散到热力图上:
Y
x
y
c
=
e
x
p
(
−
(
x
−
p
~
x
)
2
+
(
y
−
p
~
y
)
2
2
σ
p
2
)
Y_{xyc}=exp\left(\frac{-(x-\widetilde p_x)^2+(y-\widetilde p_y)^2}{2\sigma^2_p} \right)
Yxyc=exp(2σp2−(x−p
x)2+(y−p
y)2)
式中
σ
p
\sigma_p
σp 是目标尺度-自适应 的标准方差,热力图值的范围是0-1,即
Y
∈
[
0
,
1
]
W
R
×
H
R
×
C
Y \in [0,1]^{\frac {W}{R}×\frac {H}{R}×C}
Y∈[0,1]RW×RH×C, 值为1时,代表此点为目标的中心点,也就是要预测要学习的点,如果对于同个类
c
c
c (同个关键点或是目标类别)有两个高斯函数发生重叠,选择元素级最大的,得到热力图如下:
3.2 关键点损失如何计算?
论文中关键点损失定义如下:
L
k
=
−
1
N
∑
x
y
c
{
(
1
−
Y
^
x
y
c
)
α
⋅
l
o
g
(
Y
^
x
y
c
)
Y
x
y
c
=
1
(
1
−
Y
x
y
c
)
β
⋅
(
Y
^
x
y
c
)
α
⋅
l
o
g
(
1
−
Y
^
x
y
c
)
o
t
h
e
r
w
i
s
e
L_k=-\frac{1}{N}\sum_{xyc} \begin{cases} (1-\hat Y_{xyc})^{\alpha}\cdot log(\hat Y_{xyc}) & Y_{xyc}=1\\ (1-Y_{xyc})^{\beta}\cdot (\hat Y_{xyc})^{\alpha} \cdot log(1-\hat Y_{xyc}) & otherwise\end{cases}
Lk=−N1xyc∑{(1−Y^xyc)α⋅log(Y^xyc)(1−Yxyc)β⋅(Y^xyc)α⋅log(1−Y^xyc)Yxyc=1otherwise
式中:
Y
^
x
y
c
\hat Y_{xyc}
Y^xyc为预测的关键点热力图值;
Y
x
y
c
Y_{xyc}
Yxyc 为GT
关键点热力图值;
α
\alpha
α和
β
\beta
β 为权重。
(1) 情况 Y x y c = 1 Y_{xyc}=1 Yxyc=1:
当前坐标正好位于GT中心点上,当前坐标点为正样本,目标是让 Y ^ x y c \hat Y_{xyc} Y^xyc 越大越好:
( 1 − Y ^ x y c ) α (1-\hat Y_{xyc})^{\alpha} (1−Y^xyc)α的作用:
-
当 Y ^ x y c = 1 \hat Y_{xyc}=1 Y^xyc=1时, ( 1 − Y ^ x y c ) α = 0 (1-\hat Y_{xyc})^{\alpha}=0 (1−Y^xyc)α=0 ,损失为0,这是最理想的情况;
-
当 0 ≤ Y ^ x y c < 1 0\leq\hat Y_{xyc}<1 0≤Y^xyc<1时, Y ^ x y c \hat Y_{xyc} Y^xyc 值越大,权重 ( 1 − Y ^ x y c ) α (1-\hat Y_{xyc})^{\alpha} (1−Y^xyc)α 越小,损失越小,即会鼓励 Y ^ x y c \hat Y_{xyc} Y^xyc 值增大。
(2) 其他情况:
Y x y c ≠ 1 Y_{xyc}\neq1 Yxyc=1 表示当前坐标点为负样本,目标是让 Y ^ x y c \hat Y_{xyc} Y^xyc 越小越好。
( Y ^ x y c ) α (\hat Y_{xyc})^{\alpha} (Y^xyc)α 的作用:
- 当 Y ^ x y c \hat Y_{xyc} Y^xyc 越小,权重 ( Y ^ x y c ) α (\hat Y_{xyc})^{\alpha} (Y^xyc)α 也越小,即让损失越小,减小惩罚;
- 当 Y ^ x y c \hat Y_{xyc} Y^xyc 越大,权重 ( Y ^ x y c ) α (\hat Y_{xyc})^{\alpha} (Y^xyc)α 也越大,即让损失增大,增大惩罚;
( 1 − Y x y c ) β (1-Y_{xyc})^{\beta} (1−Yxyc)β 的作用:
-
当关键点远离GT中心点, Y x y c Y_{xyc} Yxyc =0,此时 ( 1 − Y x y c ) β = 1 (1-Y_{xyc})^{\beta}=1 (1−Yxyc)β=1 ,对关键点损失没有影响;
-
当关键点处于GT中心点的高斯圆范围内, 0 < Y x y c < 1 0<Y_{xyc}<1 0<Yxyc<1,此时 0 < ( 1 − Y x y c ) β < 1 0<(1-Y_{xyc})^{\beta}<1 0<(1−Yxyc)β<1 ,即让关键点损失减小;
可见 ( 1 − Y x y c ) β (1-Y_{xyc})^{\beta} (1−Yxyc)β 用于弱化GT中心点附近(高斯圆范围内)的负样本损失,而惩罚那些远离GT中心点的预测关键点。
3.3 为何要将目标中心点处理成高斯圆分布?
下图左图中,是不做高斯圆的情形,虽然绿点2更加靠近GT关键点,但是对于网络而言,红点1和绿点2处的关键点损失是一样的,所以网络没有优化方向;
下图右图中,是做一个高斯圆的情形,红点1处于高斯圆之外,将受到惩罚;而绿点在高斯圆内,越往中心,关键点损失越小,即鼓励网络学习到让预测关键点更加靠近GT中心点。
3.4 Loss的设计
CenterNet 总体Loss
为:
L
d
e
t
=
L
k
+
λ
s
i
z
e
L
s
i
z
e
+
λ
o
f
f
L
o
f
f
L_{det}=L_k+\lambda_{size}L_{size}+\lambda_{off}L_{off}
Ldet=Lk+λsizeLsize+λoffLoff
式中:
L
k
L_k
Lk 为上节中的关键点损失,
L
o
f
f
L_{off}
Loff 为偏置损失,
L
s
i
z
e
L_{size}
Lsize为尺寸损失。
偏置损失和尺寸损失的解释如下:
偏置损失:
因为CenterNet网络对图像进行了
R
=
4
R=4
R=4 的下采样,将特征图重新映射到原始图像上时会带来误差,因此需要每个关键点
p
~
\widetilde p
p
预测一个偏置
O
^
∈
R
W
R
×
H
R
×
2
\hat O \in R^{\frac {W}{R}×\frac {H}{R}×2}
O^∈RRW×RH×2。偏置损失使用L1 loss
,定义如下:
L
o
f
f
=
1
N
∑
p
∣
O
^
p
~
−
(
p
R
−
p
~
)
∣
L_{off}=\frac{1}{N}\sum_p|\hat O_{\widetilde p}-(\frac{p}{R}-\widetilde p)|
Loff=N1p∑∣O^p
−(Rp−p
)∣
式中:
O
^
p
~
\hat O_{\widetilde p}
O^p
表示关键点坐标的预测偏置;
p
p
p 为GT
关键点坐标;
R
R
R 为下采样因子;
p
~
\widetilde p
p
为预测的关键点坐标。
尺寸损失:
对每个关键点预测其宽高尺寸
S
^
p
k
∈
R
W
R
×
H
R
×
2
\hat S_{p_k} \in R^{\frac {W}{R}×\frac {H}{R}×2}
S^pk∈RRW×RH×2,尺寸损失使用L1 loss
:
L
s
i
z
e
=
1
N
∑
k
=
1
N
∣
S
^
p
k
−
S
k
∣
L_{size}=\frac{1}{N}\sum_{k=1}^N|\hat S_{p_k}-S_k|
Lsize=N1k=1∑N∣S^pk−Sk∣
式中:
S
k
S_k
Sk为GT
关键点宽高尺寸。
4 CenterNet 性能效果
在COCO数据集上,CenterNet 使用 Hourglass-104基础网络可以取得较好的检测性能,42.2% AP (7.8 FPS),比较而言,CornerNet性能为 40.5% AP(4.1 FPS),ExtremeNet性能为 40.3% AP(3.1 FPS),可见无论是精度还是速度,CenterNet都有很大的优势。
5 总结
CenterNet 论文的主要贡献包括以下几点:
- CenterNet 提出的anchor-free算法摆脱了NMS后处理复杂计算,更加简单高效。
- CenterNet 可以扩展应用到 3D检测,姿态估计等任务上,为实时目标识别任务提高了新的思路。
- CenterNet 的改进版参见博客:目标检测:一文读懂 TTFNet (CVPR2020)