非等精度测量线性函数的最小二乘法处理

非等精度测量线性函数的最小二乘法处理

3 ∼ 12 3\sim 12 312参考博文:等精度测量线性函数的最小二乘法处理
  

对等精度测量,其最小二乘法运算的出发点是
〔 v 2 〕 = 最小 〔v^{2}〕= 最小 v2=最小
而对非等精度测量,则为
〔 p v 2 〕 = 最小 〔pv^{2}〕= 最小 pv2=最小
式中: p p p——权。
其矩阵形式为
V T P V = 最小 ⋯ ⋯ ( 13 ) V^{T}PV=最小\cdots \cdots (13) VTPV=最小⋯⋯(13)

( L − A X ^ ) T P ( L − A X ^ ) = 最小 ⋯ ⋯ ( 14 ) (L-A\hat{X})^{T}P(L-A\hat{X})=最小\cdots \cdots (14) (LAX^)TP(LAX^)=最小⋯⋯(14)
p = [ p 1 0 ⋯ 0 0 p 2 ⋯ 0 ⋮ 0 0 ⋯ p n ] ( n × n 阶权矩阵) p=\begin{bmatrix} p_{1} & 0 & \cdots & 0\\ 0 & p_{2} & \cdots & 0\\ & & \vdots & \\ 0 & 0 & \cdots & p_{n} \end{bmatrix}(n\times n阶权矩阵) p= p1000p2000pn n×n阶权矩阵)
式中, p i = σ 2 σ i 2 p_{i}=\frac{\sigma ^{2}}{\sigma _{i}^{2}} pi=σi2σ2——各直接测量结果 l i l_{i} li的权; σ 2 \sigma ^{2} σ2——单位权的方差; σ i 2 \sigma _{i}^{2} σi2——各直接测量结果 l i l_{i} li的方差。
V T P V = [ v 1 v 2 ⋯ v n ] [ p 1 0 ⋯ 0 0 p 2 ⋯ 0 ⋮

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值