非等精度测量线性函数的最小二乘法处理
式 3 ∼ 12 3\sim 12 3∼12参考博文:等精度测量线性函数的最小二乘法处理
对等精度测量,其最小二乘法运算的出发点是
〔 v 2 〕 = 最小 〔v^{2}〕= 最小 〔v2〕=最小
而对非等精度测量,则为
〔 p v 2 〕 = 最小 〔pv^{2}〕= 最小 〔pv2〕=最小
式中: p p p——权。
其矩阵形式为
V T P V = 最小 ⋯ ⋯ ( 13 ) V^{T}PV=最小\cdots \cdots (13) VTPV=最小⋯⋯(13)
或
( L − A X ^ ) T P ( L − A X ^ ) = 最小 ⋯ ⋯ ( 14 ) (L-A\hat{X})^{T}P(L-A\hat{X})=最小\cdots \cdots (14) (L−AX^)TP(L−AX^)=最小⋯⋯(14)
p = [ p 1 0 ⋯ 0 0 p 2 ⋯ 0 ⋮ 0 0 ⋯ p n ] ( n × n 阶权矩阵) p=\begin{bmatrix} p_{1} & 0 & \cdots & 0\\ 0 & p_{2} & \cdots & 0\\ & & \vdots & \\ 0 & 0 & \cdots & p_{n} \end{bmatrix}(n\times n阶权矩阵) p=
p1000p20⋯⋯⋮⋯00pn
(n×n阶权矩阵)
式中, p i = σ 2 σ i 2 p_{i}=\frac{\sigma ^{2}}{\sigma _{i}^{2}} pi=σi2σ2——各直接测量结果 l i l_{i} li的权; σ 2 \sigma ^{2} σ2——单位权的方差; σ i 2 \sigma _{i}^{2} σi2——各直接测量结果 l i l_{i} li的方差。
V T P V = [ v 1 v 2 ⋯ v n ] [ p 1 0 ⋯ 0 0 p 2 ⋯ 0 ⋮