模型比较——判断预测模型优劣的几个重要指标
检验预测有效性,三个常用的指标:
- 平均绝对误差(MAE)
- 均方根误差(RMSE)
- 平均绝对百分比误差(MAPE)
【这些指标的值越小,预测精度就越高】
检验模型预测性能:
- 泛化能力是获取预测性能的重要指标。用一致性指数(IA)来反映泛化能力。
【IA 值的取值范围在0~1之间,计算结果越接近1说明拟合效果越好,预测性能越好】
检验模型预测能力:
- U统计量(U1)来评价预测能力
【其值越接近0,预测模型的预测能力越好】
各个统计量具体的计算公式:

(还会持续更新一些计量和机器学习的基本知识,可以点个关注蹲一蹲~ 如果有问题欢迎交流~~~)