无人机航迹规划:差异化创意搜索(Differentiated Creative Search ,DCS)算法求解无人机路径规划MATLAB

一、无人机模型介绍

单个无人机三维路径规划问题及其建模_无人机路径规划场景建模-CSDN博客

参考文献

[1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120

二、差异化创意搜索算法求解无人机路径规划

差异化创意搜索(Differentiated Creative Search ,DCS)算法由Poomin Duankhan 等人于2024年提出,DCS将独特的知识获取过程与创造性的现实主义范式相结合,通过采用双重策略方法,提高算法效率。

参考文献:

 [1]Duankhan P, Sunat K, Chiewchanwattana S, et al. The Differentiated Creative search (DCS): Leveraging Differentiated knowledge-acquisition and Creative realism to address complex optimization problems[J]. Expert Systems with Applications, 2024: 123734. Redirecting    

close all
clear  
clc
addpath('./Algorithm/')%添加算法路径
warning off;
%% 三维路径规划模型定义
global startPos goalPos N
N=2;%待优化点的个数(可以修改)
startPos = [10, 10, 80]; %起点(可以修改)
goalPos = [80, 90, 150]; %终点(可以修改)
SearchAgents_no=30; % 种群大小(可以修改)
Function_name='F2'; %F1:随机产生地图 F2:导入固定地图
Max_iteration=50; %最大迭代次数(可以修改)
% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
[Best_score,Best_pos,curve]=AlgorithmName(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);%算法优化求解
figure
semilogy(curve,'Color','g','linewidth',3)
xlabel('迭代次数');
ylabel('飞行路径长度');
legend(AlgorithmName)
display(['算法得到的最优适应度: ', num2str(Best_score)]); 
Position=[Best_pos(1:dim/3); Best_pos(1+dim/3:2*(dim/3)); Best_pos(1+(2*dim/3):end)]'; %优化点的XYZ坐标(每一行是一个点)
plotFigure(Best_pos,AlgorithmName)%画最优路径

无人机轨迹坐标:

  1.0000000e+01  1.0000000e+01  8.0000000e+01

  1.0868094e+01  1.2026109e+01  8.1737283e+01

  1.1689406e+01  1.3940646e+01  8.3410320e+01

  1.2465777e+01  1.5746945e+01  8.5020765e+01

  1.3199047e+01  1.7448340e+01  8.6570269e+01

  1.3891058e+01  1.9048166e+01  8.8060487e+01

  1.4543650e+01  2.0549758e+01  8.9493070e+01

  1.5158663e+01  2.1956450e+01  9.0869671e+01

  1.5737938e+01  2.3271577e+01  9.2191944e+01

  1.6283315e+01  2.4498472e+01  9.3461540e+01

  1.6796637e+01  2.5640472e+01  9.4680112e+01

  1.7279742e+01  2.6700910e+01  9.5849313e+01

  1.7734471e+01  2.7683121e+01  9.6970796e+01

  1.8162666e+01  2.8590439e+01  9.8046214e+01

  1.8566167e+01  2.9426200e+01  9.9077218e+01

  1.8946814e+01  3.0193737e+01  1.0006546e+02

  1.9306448e+01  3.0896384e+01  1.0101260e+02

  1.9646910e+01  3.1537478e+01  1.0192028e+02

  1.9970040e+01  3.2120352e+01  1.0279016e+02

  2.0277679e+01  3.2648340e+01  1.0362389e+02

  2.0571668e+01  3.3124777e+01  1.0442313e+02

  2.0853847e+01  3.3552999e+01  1.0518952e+02

  2.1126057e+01  3.3936338e+01  1.0592472e+02

  2.1390138e+01  3.4278131e+01  1.0663038e+02

  2.1647932e+01  3.4581711e+01  1.0730816e+02

  2.1901278e+01  3.4850413e+01  1.0795970e+02

  2.2152018e+01  3.5087571e+01  1.0858666e+02

  2.2401991e+01  3.5296520e+01  1.0919069e+02

  2.2653040e+01  3.5480595e+01  1.0977345e+02

  2.2907003e+01  3.5643130e+01  1.1033659e+02

  2.3165722e+01  3.5787460e+01  1.1088176e+02

  2.3431038e+01  3.5916919e+01  1.1141061e+02

  2.3704791e+01  3.6034842e+01  1.1192480e+02

  2.3988822e+01  3.6144563e+01  1.1242597e+02

  2.4284971e+01  3.6249417e+01  1.1291579e+02

  2.4595079e+01  3.6352739e+01  1.1339590e+02

  2.4920987e+01  3.6457862e+01  1.1386796e+02

  2.5264535e+01  3.6568122e+01  1.1433362e+02

  2.5627564e+01  3.6686853e+01  1.1479453e+02

  2.6011915e+01  3.6817389e+01  1.1525234e+02

  2.6419428e+01  3.6963066e+01  1.1570871e+02

  2.6851943e+01  3.7127217e+01  1.1616529e+02

  2.7311302e+01  3.7313178e+01  1.1662374e+02

  2.7799345e+01  3.7524282e+01  1.1708570e+02

  2.8317913e+01  3.7763864e+01  1.1755283e+02

  2.8868846e+01  3.8035260e+01  1.1802678e+02

  2.9453984e+01  3.8341802e+01  1.1850920e+02

  3.0075170e+01  3.8686827e+01  1.1900175e+02

  3.0734242e+01  3.9073668e+01  1.1950608e+02

  3.1433043e+01  3.9505661e+01  1.2002385e+02

  3.2173412e+01  3.9986139e+01  1.2055669e+02

  3.2957189e+01  4.0518436e+01  1.2110628e+02

  3.3786217e+01  4.1105889e+01  1.2167425e+02

  3.4662335e+01  4.1751831e+01  1.2226227e+02

  3.5587384e+01  4.2459597e+01  1.2287198e+02

  3.6563204e+01  4.3232520e+01  1.2350504e+02

  3.7591637e+01  4.4073937e+01  1.2416310e+02

  3.8674522e+01  4.4987181e+01  1.2484782e+02

  3.9813701e+01  4.5975587e+01  1.2556084e+02

  4.1011014e+01  4.7042490e+01  1.2630382e+02

  4.2268302e+01  4.8191223e+01  1.2707841e+02

  4.3587405e+01  4.9425123e+01  1.2788627e+02

  4.4970164e+01  5.0747522e+01  1.2872904e+02

  4.6418420e+01  5.2161756e+01  1.2960839e+02

  4.7934013e+01  5.3671159e+01  1.3052595e+02

  4.9518783e+01  5.5279066e+01  1.3148339e+02

  5.1174573e+01  5.6988811e+01  1.3248236e+02

  5.2903221e+01  5.8803729e+01  1.3352451e+02

  5.4706569e+01  6.0727154e+01  1.3461150e+02

  5.6586457e+01  6.2762421e+01  1.3574497e+02

  5.8544727e+01  6.4912865e+01  1.3692658e+02

  6.0583218e+01  6.7181820e+01  1.3815798e+02

  6.2703771e+01  6.9572620e+01  1.3944082e+02

  6.4908227e+01  7.2088601e+01  1.4077676e+02

  6.7198427e+01  7.4733096e+01  1.4216745e+02

  6.9576211e+01  7.7509440e+01  1.4361455e+02

  7.2043419e+01  8.0420968e+01  1.4511970e+02

  7.4601893e+01  8.3471014e+01  1.4668455e+02

  7.7253473e+01  8.6662913e+01  1.4831077e+02

  8.0000000e+01  9.0000000e+01  1.5000000e+02

三、完整MATLAB代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值