Hopfield神经网络求解旅行商问题(Traveling Salesman Problem,TSP),提供完整MATLAB代码,复制粘贴即可运行

194 篇文章 20 订阅
64 篇文章 1 订阅

Hopfield神经网络是以美国物理学家约翰·霍普菲尔德(John Hopfield)的名字命名的。他在1982年提出了这种类型的神经网络模型,因此通常被称为Hopfield网络。Hopfield网络是一种早期的人工神经网络,具有以下特点:

  1. 递归连接:网络中的每个神经元都与其他所有神经元相连,形成一个高度耦合的网络。

  2. 单层网络:尽管Hopfield网络通常被视为单层网络,但它通过递归连接实现了类似于多层网络的功能。

  3. 能量函数:Hopfield网络定义了一个能量函数,网络的动态演化过程可以看作是能量函数的最小化过程。网络状态的稳定性与能量函数的局部极小值相关联。

  4. 稳定性:Hopfield网络具有稳定的吸引子状态,网络会收敛到这些状态之一。这些吸引子状态可以看作是网络的记忆或存储的模式。

  5. 联想记忆:Hopfield网络能够存储和回忆模式,即使在输入模式不完全或有噪声的情况下也能做到这一点。

  6. 优化问题:Hopfield网络可以用于解决优化问题,如旅行商问题(TSP),通过将问题的解决方案映射到网络的能量状态中,并寻找能量函数的最小值。

  7. 异步更新:在Hopfield网络中,神经元的状态更新通常是异步进行的,即在任何给定的时间步,只有一个神经元的状态会更新。

  8. 局部计算:每个神经元的状态更新只依赖于其当前的输入和网络的当前状态,不需要全局信息。

Hopfield神经网络主要用于优化问题和联想记忆。在旅行商问题(TSP)中,Hopfield网络通过能量函数的最小化来寻找问题的近似最优解。

原理介绍:

  1. 模型结构:Hopfield神经网络通常由神经元组成的二维网格构成,每个神经元对应一个城市和一个旅行顺序位置。
  2. 激活状态:神经元的激活值表示当前城市在特定位置的可能性,初始时随机设置,运行中不断调整。
  3. 能量函数:定义一个能量函数来衡量当前网络状态与最优解的差距,包括路径长度、城市的唯一性和顺序的合理性。
  4. 更新规则:使用更新规则来调整神经元的激活值,如基于梯度下降的方法或竞争机制。
  5. 求解过程:初始化网络,迭代更新,判断收敛,提取解。最终的神经元激活状态表示旅行商的路径。

完整MATLAB如下,复制粘贴即可运行:

%% 连续Hopfield神经网络的优化—旅行商问题优化计算
 
%% 清空环境变量、定义全局变量
clear all
clc
global A D
 
%% 城市位置
citys=rand(10,2);
%% 计算相互城市间距离
distance = dist(citys,citys');
%% 初始化网络
N = size(citys,1);
A = 200;
D = 100;
U0 = 0.1;
step = 0.0001;
delta = 2 * rand(N,N) - 1;
U = U0 * log(N-1) + delta;
V = (1 + tansig(U/U0))/2;
iter_num = 10000;
E = zeros(1,iter_num);
%% 寻优迭代
for k = 1:iter_num  
    % 动态方程计算
    dU = diff_u(V,distance);
    % 输入神经元状态更新
    U = U + dU*step;
    % 输出神经元状态更新
    V = (1 + tansig(U/U0))/2;
    % 能量函数计算
    e = energy(V,distance);
    E(k) = e;  
end
 %% 判断路径有效性
[rows,cols] = size(V);
V1 = zeros(rows,cols);
[V_max,V_ind] = max(V);
for j = 1:cols
    V1(V_ind(j),j) = 1;
end
C = sum(V1,1);
R = sum(V1,2);
flag = isequal(C,ones(1,N)) & isequal(R',ones(1,N));
%  flag=1;
%% 结果显示
if flag == 1
   % 计算初始路径长度
   sort_rand = randperm(N);
   citys_rand = citys(sort_rand,:);
   Length_init = dist(citys_rand(1,:),citys_rand(end,:)');
   for i = 2:size(citys_rand,1)
       Length_init = Length_init+dist(citys_rand(i-1,:),citys_rand(i,:)');
   end
   % 绘制初始路径
   figure(1)
   plot([citys_rand(:,1);citys_rand(1,1)],[citys_rand(:,2);citys_rand(1,2)],'o-','LineWidth',2);
   for i = 1:length(citys)
       text(citys(i,1),citys(i,2),['   ' num2str(i)])
   end
   text(citys_rand(1,1),citys_rand(1,2),['       起点' ])
   text(citys_rand(end,1),citys_rand(end,2),['       终点' ])
   title(['优化前路径(长度:' num2str(Length_init) ')'])
   axis([0 1 0 1])
   grid on
   xlabel('城市位置横坐标')
   ylabel('城市位置纵坐标')
   % 计算最优路径长度
   [V1_max,V1_ind] = max(V1);
   citys_end = citys(V1_ind,:);
   Length_end = dist(citys_end(1,:),citys_end(end,:)');
   for i = 2:size(citys_end,1)
       Length_end = Length_end+dist(citys_end(i-1,:),citys_end(i,:)');
   end
   disp('最优路径矩阵');
   % 绘制最优路径
   figure(2)
   plot([citys_end(:,1);citys_end(1,1)],...
       [citys_end(:,2);citys_end(1,2)],'o-','LineWidth',2);
   for i = 1:length(citys)
       text(citys(i,1),citys(i,2),['  ' num2str(i)])
   end
   text(citys_end(1,1),citys_end(1,2),['       起点' ])
   text(citys_end(end,1),citys_end(end,2),['       终点' ])
   title(['优化后路径(长度:' num2str(Length_end) ')'])
   axis([0 1 0 1])
   grid on
   xlabel('城市位置横坐标')
   ylabel('城市位置纵坐标')
   % 绘制能量函数变化曲线
   figure(3)
   plot(1:iter_num,E,'LineWidth',2);
   ylim([0 2000])
   title(['能量函数变化曲线(最优能量:' num2str(E(end)) ')']);
   xlabel('迭代次数');
   ylabel('能量函数');
else
   disp('寻优路径无效');
end
function du=diff_u(V,d)
global A D
n=size(V,1);
sum_x=repmat(sum(V,2)-1,1,n);
sum_i=repmat(sum(V,1)-1,n,1);
V_temp=V(:,2:n);
V_temp=[V_temp V(:,1)];
sum_d=d*V_temp;
du=-A*sum_x-A*sum_i-D*sum_d;
end
function E=energy(V,d)
global A D
n=size(V,1);
sum_x=sumsqr(sum(V,2)-1);
sum_i=sumsqr(sum(V,1)-1);
V_temp=V(:,2:n);
V_temp=[V_temp V(:,1)];
sum_d=d*V_temp;
sum_d=sum(sum(V.*sum_d));
E=0.5*(A*sum_x+A*sum_i+D*sum_d);
end
![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6116ab2c6e6f4cbfa11e31355aa7817d.png)



在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值