机器学习案例(十三):毕设之贷款预测分析

这篇博客详细介绍了利用机器学习进行信贷违约预测的案例,涵盖了数据来源、数据探索、预处理、模型建立(包括逻辑回归、随机森林、LightGBM、XGBoost)等步骤,旨在预测用户贷款违约的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

目标:
根据用户的数据信息预测其是否有违约的可能,以此判断是否通过用户的贷款。

题目来源:https://tianchi.aliyun.com/competition/entrance/531830/information

参考

  • https://www.heywhale.com/mw/project/607543dbd143c800173b2069

数据集

数据来源

本文使用的数据来源于阿里云平台天池大数据竞赛,该数据来自某信贷平台内部的贷款记录,平台从数据集中抽取80万条作为训练数据集,20万条作为测试数据集A。训练集包含47列变量信息,测试集包含46列变量信息,其中 n0-n14总共15列为匿名变量,这些匿名变量是对借款人行为计数特征的处理,同时原始数据集中还对employmentTitle(就业职称)、purpose(借款人在贷款申请时的贷款用途类别)、postCode(借款人在贷款申请中提供的邮政编码的前3位数字)和 title(借款人提供的贷款名称)等字段信息进行了脱敏处理。

数据描述

数据:
t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

川川菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值