【六更完结!由于字数限制开新文章继续】零基础信号与系统学习笔记:复指数信号、傅里叶级数的系数推导、三角函数正交性、离散傅里叶变换、相位补偿、z变换表、逆变换表、常见序列及其作用

终于还是躲不过信号与系统,在此记录学习笔记。😉 争取从零开始一遍搞懂
定期更新!!!【2020年4月14日完结】

友链:奥本海姆第三章

基础1:复指数信号

复指数信号基础知识

  • 复指数信号是指数信号的指数因子是复数时,称之为复指数信号。
  • 复指数信号在物理上是不可实现的,但是它概括了多种情况。利用复指数信号可以表示常见的普通信号,如直流信号、指数信号、正弦信号等。
  • 复指数信号的微分和积分仍然是复指数信号,利用复指数信号可以使许多运算和分析简化。因此,复指数信号是信号分析中非常重要的基本信号。

复指数信号推导1

一般情况下的复指数信号为 f ( x ) = K e ( σ + j w ) t f(x)=Ke^{(\sigma + jw)t} f(x)=Ke(σ+jw)t,其中 σ \sigma σ表示实部,w表示虚部,K是实数,记复数 s = σ + j w s=\sigma + jw s=σ+jw,则 f ( x ) = K e s t f(x)=Ke^{st} f(x)=Kest
借助欧拉公式展开:

f ( x ) = K e ( σ + j w ) t = K e σ t + j w t = K e σ t ( c o s ( w t ) + j s i n ( w t ) ) f(x)=Ke^{(\sigma + jw)t}=Ke^{\sigma t+jwt}=Ke^{\sigma t}(cos(wt)+jsin(wt) ) f(x)=Ke(σ+jw)t=Keσt+jwt=Keσt(cos(wt)+jsin(wt))

此结果表明:

  • 一个复指数信号可分为实、虚两部分。
  • 实部包含余弦信号,虚部则为正弦信号。指数因子实部 σ \sigma σ表表示振幅随时间变化的情况.
  • 指数因子的虚部w表示角频率

相应的,结题技巧有:
cos ⁡ ( n cos ⁡ t ) = 1 2 ( e j w 0 t + e − j w 0 t ) \cos (n \cos t)=\frac{1}{2}\left(e^{j w_{0} t}+e^{-j w_{0} t}\right) cos(ncost)=21(ejw0t+ejw0t)

虚指数信号

当振幅不随时间变化时, σ = 0 \sigma=0 σ=0,则信号是 e j w t e^{jwt} ejwt,称为虚指数信号。

  • 虚指数信号形式,为等幅正弦信号
  • 具有周期性,其周期为2π/ω;

虚指数信号特性和作用

∣ e j w t ∣ = c o s 2 ( w t ) + s i n 2 ( w t ) = 1 |e^{jwt}|=cos^2(wt)+sin^2(wt)=1 ejwt=cos2(wt)+sin2(wt)=1,即一个周期复指数信号 e j w t e^{jwt} ejwt的绝对值的平方等于1。

如果把虚指数信号作为控制系统的输入函数,那么系统的输出也应当是一个复数,输出的实部与输入的实部:cos(wt)相对应;输出的虚部与输入的虚部:sin(wt)相对应。

作用:
输入一个复指数函数,输出也是复指数,此时可以计算系统输出的振幅( ( 响 应 实 部 2 + 响 应 虚 部 2 ) \sqrt{(响应实部^2+响应虚部^2)} (2+2) )和相位 w w w

直流信号

σ = 0 且 w = 0 \sigma=0 且w=0 σ=0w=0时,即s=0,此时信号退化为直流信号。

基础2:傅里叶级数

任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示,这个级数就称为傅里叶级数
X ( t ) = a 0 + ∑ n = 1 ∞ [ a n cos ⁡ ( n ω t ) + b n sin ⁡ ( n ω t ) ] = a 0 + ∑ n = 1 ∞ c n sin ⁡ ( n ω t + θ n ) = a 0 + c 1 sin ⁡ ( ω t + θ 1 ) + c 2 sin ⁡ ( 2 ω t + θ 2 ) + ⋯ n = 1 , 2 , ⋯ \boxed{\begin{aligned} X(t)=& a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \omega t)+b_{n} \sin (n \omega t)\right]=\\ & a_{0}+\sum_{n=1}^{\infty} c_{n} \sin \left(n \omega t+\theta_{n}\right)=\\ & a_{0}+c_{1} \sin \left(\omega t+\theta_{1}\right)+c_{2} \sin \left(2 \omega t+\theta_{2}\right)+\cdots \\ & n=1,2, \cdots \end{aligned}} X(t)=a0+n=1[ancos(nωt)+bnsin(nωt)]=a0+n=1cnsin(nωt+θn)=a0+c1sin(ωt+θ1)+c2sin(2ωt+θ2)+n=1,2,
特别注意:X(t)周期是T,则cos, sin 的周期是T/n

推导傅里叶级数的系数

使用基础1中的虚指数信号,得到
X ( t ) = ∑ k = − ∞ + ∞ a k ⋅ e j k w 0 t \boxed{ X(t)=\sum_{k=-\infty}^{+\infty} a_{k} \cdot e^{jkw_{0}t}} X(t)=k=+akejkw0t

左右同乘 e − j n ω 0 t e^{-j n \omega_{0} t} ejnω0t得到:
x ( t ) e − j n ω 0 t = ∑ k = − ∞ + ∞ a k e j ( k − n ) ω 0 t x(t) e^{-j n \omega_{0} t}=\sum_{k=-\infty}^{+\infty} a_{k} e^{j(k-n) \omega_{0} t} x(t)ejnω0t=k=+akej(kn)ω0t

两边对t从0到 T = 2 π / w 0 T=2\pi/w_{0} T=2π/w0积分:
∫ 0 T x ( t ) e − j n ω 0 t d t = ∫ 0 T ∑ k = − ∞ + ∞ a k e j ( k − n ) ω 0 t d t \int_{0}^{T} x(t) e^{-j n \omega_{0} t} d t=\int_{0}^{T} \sum_{k=-\infty}^{+\infty} a_{k} e^{j(k-n) \omega_{0} t} d t 0Tx(t)ejnω0tdt=0Tk=+akej(kn)ω0tdt
调换积分次序,提取 a k a_{k} ak
∫ 0 T x ( t ) e − j n ω 0 t d t = ∑ k = − ∞ + ∞ a k [ ∫ 0 T e j ( k − n ) ω 0 t d t ] \int_{0}^{T} x(t) e^{-j n \omega_{0} t} d t=\sum_{k=-\infty}^{+\infty} a_{k}\left[\int_{0}^{T} e^{j(k-n) \omega_{0} t} d t\right] 0Tx(t)ejnω0tdt=k=+ak[0Tej(kn)ω0tdt]

对于右边的积分,由欧拉关系:
∫ 0 T e j ( k − n ) ω 0 t d t = ∫ 0 T cos ⁡ ( k − n ) ω 0 t d t + j ∫ 0 T sin ⁡ ( k − n ) ω 0 t d t \int_{0}^{T} e^{j(k-n) \omega_{0} t} d t=\int_{0}^{T} \cos (k-n) \omega_{0} t d t+j \int_{0}^{T} \sin (k-n) \omega_{0} t d t 0Tej(kn)ω0tdt=0Tcos(kn)ω0tdt+j0Tsin(kn)ω0tdt
三角函数积分的正交性*(见扩充知识),积分值当且仅当n=k时不为0:
∑ k = − ∞ + ∞ a k [ ∫ 0 T e j ( k − n ) ω 0 t d t ] = T a n a n = 1 T ∫ 0 T x ( t ) e − j n ω 0 t d t \begin{aligned} &\sum_{k=-\infty}^{+\infty} a_{k}\left[\int_{0}^{T} e^{j(k-n) \omega_{0} t} d t\right]=T a_{n}\\ &a_{n}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j n \omega_{0} t} d t \end{aligned} k=+ak[0Tej(kn)ω0tdt]=Tanan=T10Tx(t)ejnω0tdt

即知傅里叶级数的系数为
a n = 1 T ∫ 0 T x ( t ) e − j n ω 0 t d t \boxed{a_{n}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j n \omega_{0} t} d t} an=T10Tx(t)ejnω0tdt

扩充知识1:三角函数正交性

在这里插入图片描述
在这里插入图片描述

“建立三角函数坐标系,1,coswt,cos2wt,…,sinwt,sin2wt,…为正交基(不同基点积=0,同基点积!=1,所以是正交基,但是非标准正交基),则函数f(t)可以表示为三角函数坐标系下的点,其坐标即为a0,an,bn。用f(t)与各个基进行点积计算就可得到a0,an,bn”
该段参考:https://blog.csdn.net/lijil168/article/details/89261861

例题:已知 f ( t ) = a 0 + ∑ n = 1 ∞ ( a n cos ⁡ n w t + b n sin ⁡ w t ) f(t)={a_{0}} +\sum_{n=1}^{\infty}\left(a_{n} \cos n w t+b_{n} \sin w t\right) f(t)=a0+n=1(ancosnwt+bnsinwt),求解 a 0 、 a n 、 b n a_{0}、a_{n}、b_{n} a0anbn

  • 点积 ⟨ u , v ⟩ {\langle u,v\rangle} u,v:等价于按点乘累加, ⟨ u , v ⟩ = ∫ u v d t {\langle u,v\rangle}=\int uv dt u,v=uvdt
    在这里插入图片描述

a 0 = ⟨ f , 1 ⟩ ⟨ 1 , 1 ⟩ = ∫ − 1 2 T 2 f ( t ) d t ∫ − 1 2 T 2 d t = ∫ − T 2 T 2 f ( t ) d t T a_{0}=\frac{\langle f, 1\rangle}{\langle 1,1\rangle}=\frac{\int_{-\frac{1}{2}}^{\frac{T}{2}} f(t) d t}{\int_{-\frac{1}{2}}^{\frac{T}{2}} d t}=\frac{\int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) d t}{T} a0=1,1f,1=212Tdt212Tf(t)dt=T2T2Tf(t)dt
a n = ⟨ f , cos ⁡ n w t ⟩ ⟨ cos ⁡ n t ,  cosn  w t ⟩ = ∫ − π 2 T 2 f ( t ) cos ⁡ n t d t ∫ − T 2 T 2 cos ⁡ 2 n w t d t = ∫ − T 2 T 2 f ( t ) cos ⁡ n w t d t T 2 a_{n}=\frac{\left\langle f, \cos nw t\right\rangle}{\left\langle\cos nt,\text { cosn }wt \right\rangle}=\frac{\int_{-\frac{\pi}{2}}^{\frac{T}{2}} f(t) \cos n t d t}{\int_{-\frac{T}{2}}^{\frac{T}{2}} \cos ^{2} n w t d t}=\frac{\int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos n w t d t}{\frac{T}{2}} an=cosnt, cosn wtf,cosnwt=2T2Tcos2nwtdt2π2Tf(t)cosntdt=2T2T2Tf(t)cosnwtdt
b n = ⟨ f , sin ⁡ n w t ⟩ ⟨ sin ⁡ n w t , sin ⁡ n w t ⟩ = ∫ − 1 2 π 2 f ( t ) sin ⁡ n w t d t ∫ − π 2 π 2 sin ⁡ 2 n v t d t = ∫ − π 2 π 2 f ( t ) sin ⁡ n w t d t T 2 b_{n}=\frac{\langle f, \sin n w t\rangle}{\langle\sin n w t, \sin n w t\rangle}=\frac{\int_{-\frac{1}{2}}^{\frac{\pi}{2}} f(t) \sin n w t d t}{\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} n v t d t}=\frac{\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(t) \sin n w t d t}{\frac{T}{2}} bn=sinnwt,sinnwtf,sinnwt=2π2πsin2nvtdt212πf(t)sinnwtdt=2T2π2πf(t)sinnwtdt

注意:三角基正交,但不是标准正交基,因为 ⟨ 1 , 1 ⟩ , ⟨ c o s n w t , c o s n w t ⟩ , ⟨ s i n n w t , s i n n w t ⟩ ≠ 1 {\langle 1,1\rangle},{\langle cosnwt, cosnwt\rangle},{\langle sinnwt, sinnwt\rangle} \not= 1 1,1cosnwt,cosnwtsinnwt,sinnwt=1

三角函数第二积分常用公式

∫ 0 x 2 cos ⁡ n x d x = ∫ 0 π 2 sin ⁡ n x d x = { ( 2 m − 1 ) ! ! ( 2 m ) ! ! ⋅ π 2 n = 2 m ( 2 m − 2 ) ! ! ( 2 m − 1 ) ! ! , n = 2 m − 1 \boxed{\int_{0}^{\frac{x}{2}} \cos ^{n} x d x=\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x=\left\{\begin{array}{ll} \frac{(2 m-1) ! !}{(2 m) ! !} \cdot \frac{\pi}{2} & n=2 m \\ \frac{(2 m-2) ! !}{(2 m-1) ! !}, & n=2 m-1 \end{array}\right.} 02xcosnxdx=02πsinnxdx={(2m)!!(2m1)!!2π(2m1)!!(2m2)!!,n=2mn=2m1

基础三:常见序列的作用

以下内容摘自奥本海姆-离散时间信号处理

单位样本序列 δ \delta δ[n]

在这里插入图片描述

单位阶跃序列u[n]

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


二更
加油冲。

李永乐老师笔记

时域和频域是在不同角度观察信号:
在这里插入图片描述
由于现实中存在着大量信号是非周期的信号,可以看成周期是无穷。
利用上文提到的三角函数正交性,只需要内积,也就是上文的傅里叶变换公式,就可以提取包含 w w w的成分(如果不包含,则内积结果为0
在这里插入图片描述

拉普拉斯变换和衰减因子

因为所有的正弦波余弦波都有最大值,如果要描述一个在远处是无穷的信号,就很没用。因此要对原信号乘上一个衰减因子。
在上文进行展开时我们用到了:
f ( x ) = K e ( σ + j w ) t = K e σ t + j w t = K e σ t ( c o s ( w t ) + j s i n ( w t ) ) f(x)=Ke^{(\sigma + jw)t}=Ke^{\sigma t+jwt}=Ke^{\sigma t}(cos(wt)+jsin(wt) ) f(x)=Ke(σ+jw)t=Keσt+jwt=Keσt(cos(wt)+jsin(wt))
这里的 σ \sigma σ就可以看做一种衰减因子(<0时)

有衰减因子的傅里叶变换
∫ − ∞ + ∞ f ( t ) e − σ t ⋅ e − j w t ⋅ d t \int_{-\infty}^{+\infty} f(t) e^{-\sigma t} \cdot e^{-j w t} \cdot d t +f(t)eσtejwtdt

物理上还可以理解为:为让一个边震荡边增加幅度的正弦波来参与原函数。

离散傅里叶变换

上文中已经推导了函数的傅里叶系数,则对于周期为2 π \pi π的周期函数 f ( x ) f(x) f(x),且 f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) f(x)=2a0+n=1(ancosnx+bnsinnx)有:
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) ( a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x ( n = 0 , 1 , ⋯   ) b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x ( n = 1 , 2 , ⋯   ) \begin{aligned} f(x) &=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \\ \left (a_{n}\right.&=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x \mathrm{d} x \quad(n=0,1, \cdots) \\ b_{n} &=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x \mathrm{d} x \quad(n=1,2, \cdots) \end{aligned} f(x)(anbn=2a0+n=1(ancosnx+bnsinnx)=π1ππf(x)cosnxdx(n=0,1,)=π1ππf(x)sinnxdx(n=1,2,)
第一行称为傅里叶级数,第二行第三行称为傅里叶系数。

离散形式和补偿规律

参考https://www.zhihu.com/question/279808864/answer/552617806
希望得到(0,1,0,0)的离散信号【周期为4,在时间点time=2时输出1,time=1,3,4输出0】,则需要先获得(1,0,0,0),然后移位,即对相位进行补偿,从而获得移位的效果。

利用:

  • 当两个单位圆周(单位值号)之间角度差180度的时
    候,他俩相加所得的信号振幅为0。
  • 三个单位圆周角度互相相差120度时,也有同样现象。
  • … …
  • n个单位圆周角度互相差360/n度时,信号振幅和为0

即可获得单位圆震荡的表示方法,动图见上文知乎链接。

使用虚指数信号的话,即可表示成:从 e − i 2 π 0 4 e^{-i 2 \pi \frac{0}{4}} ei2π40补偿到 e − i 2 π 1 4 e^{-i 2 \pi \frac{1}{4}} ei2π41,即可实现(0,1,0,0)

图像高低频率性质

以照片为例,低频表示人的轮廓,高频表示人的细节(如斑点,皱纹等)
磨皮一定程度上就是去掉高频成分

相位补偿

更长的信号可以通过叠加 e − i 2 π i k e^{-i 2 \pi \frac{i}{k}} ei2πki的方式,对时间点有k个的单位信号补偿 i i i

对于不同频率信号来说,圆周的旋转素履是不同的。我们的信号周期为4,频率为1Hz, 时移1需要1/4*360=90度的相位补偿,同理1Hz信号时移2,或者2Hz的信号时移1,都需要180度。
公式: 2 π n − 1 N 2 \pi \frac{n-1}{N} 2πNn1

而当信号是(m_{1},m_{2},m_{3},m_{4})类型的时候, e − i 2 π i k e^{-i 2 \pi \frac{i}{k}} ei2πki前还需要乘以幅值平均 m i / 4 m_{i}/4 mi/4

对于某特定频率k,即可得到离散傅里叶变换公式:
X k = 1 N ∑ n = 0 N − 1 x n ⋅ e − 2 π i N k n X_{k}=\frac{1}{N} \sum_{n=0}^{N-1} x_{n} \cdot e^{-\frac{2 \pi i}{N} k n} Xk=N1n=0N1xneN2πikn
形象化解释:
在这里插入图片描述

傅里叶变换后周期的改变情况:

周期<—>离散,非周期<—>连续
在这里插入图片描述


三更:

Z变换

基础知识:洛伦级数

洛朗级数是泰勒级数的延拓版
参考:https://www.zhihu.com/question/26482591
阿贝尔定理:
在这里插入图片描述
泰勒:
在这里插入图片描述
在这里插入图片描述
洛伦:
在这里插入图片描述

z变换和拉普拉斯变换的关系

参考https://www.bilibili.com/video/BV1TW411F7wj?from=search&seid=15474440315054549
z变换相当于一个封装了更多的拉普拉斯变换
z = e ( σ + j w ) T = e σ ⋅ T ⋅ e j w ⋅ T = A ⋅ e j φ \begin{aligned} z &=e^{(\sigma+j w) T} \\ &=e^{\sigma \cdot T} \cdot e^{j w \cdot T} \\ &=A \cdot e^{j \varphi} \end{aligned} z=e(σ+jw)T=eσTejwT=Aejφ
z就相当于一根长A,角 j φ j \varphi jφ的棍子
在这里插入图片描述
σ = 0 \sigma=0 σ=0时,拉普拉斯变换退化成傅里叶变换
σ = 0 ⟶ S = σ + j w = j w \sigma=0 \longrightarrow S=\sigma+j w=j w σ=0S=σ+jw=jw
此时A=1,所以傅里叶变换是单位圆上的z变换。

z变换可以由离散信号的拉普拉斯变换推导过来:
在这里插入图片描述
左式 F s ( s ) F_{s}(s) Fs(s)中,_{s}表示sample, (s)表示复数s
右式T是指0和1之间的间隔。
立体上来看:
在这里插入图片描述
带上 n ^{n} n之后就相当于敲碎成一个一个离散的点
(二维视图)
在这里插入图片描述
没有 n ^{n} n就是单独一个点:
e s T = e ( σ + j ω ) T = e σ T ⋅ e j w T = A ⋅ ( c o s w T + j sin ⁡ w T ) = A ( a + b j ) \begin{array}{l} e^{s T} \\ =e^{(\sigma+j \omega) T} \\ =e^{\sigma_{T}} \cdot e^{j w_{T}} \\ =A \cdot\left(cos wT+j \sin w{T}\right) \\ =A(a+bj)\end{array} esT=e(σ+jω)T=eσTejwT=A(coswT+jsinwT)=A(a+bj)
四更继续z变换
参考中国大学慕课-东南大学数字信号处理


学术定义算子和收敛域

奥本海姆定义:
在这里插入图片描述
网课定义:
在这里插入图片描述
单边z变换只对大于等于0作变换
在这里插入图片描述
但如果只给出表达式,不给出收敛域,是很不对的在这里插入图片描述
对于一个相同的z变换,给定不同的收敛域,那反应的序列也不一样。
一般收敛域是一个圆环
在这里插入图片描述
在这里插入图片描述
下面讨论三种不同序列的收敛域:

1 :有限长序列

在这里插入图片描述
这个序列因为是有限的,只要项里没有无穷,则在几乎整个z平面上收敛,

注意:需要单独讨论0点和无穷点

经常能满足一个条件,所以要么包含零点,要么包含零点
在这里插入图片描述

只有一个特例序列,两边都包含,就是下图:
在这里插入图片描述

例子2:
矩形序列x(n)= R N ( n ) R_{N}(n) RN(n),收敛域是0到N-1

X ( z ) = ∑ n = − ∞ ∞ R N ( n ) z − n = ∑ n = 0 N − 1 z − n = 1 + z − 1 + z − 2 − 1 + ⋯ + z − ( N − 1 ) X(z)=\sum_{n=-\infty}^{\infty} R_{N}(n) z^{-n}=\sum_{n=0}^{N-1} z^{-n}=1+z^{-1}+z^{-2}-1+\cdots+z^{-(N-1)} X(z)=n=RN(n)zn=n=0N1zn=1+z1+z21++z(N1)
X ( z ) = 1 − z − N 1 − z − 1 , 0 < 1 z ∣ ≤ ∞ X(z)=\frac{1-z^{-N}}{1-z^{-1}}, 0<1 z | \leq \infty X(z)=1z11zN,0<1z

2: 右边序列

在这里插入图片描述
收敛域在圆外,包含了无穷远点。

在这里插入图片描述

3:左边序列

在这里插入图片描述

4: 双边序列

可以看做两者之和
在这里插入图片描述
可以分解后分别求

收敛域是公共部分的圆环

z变换小结

在这里插入图片描述
在这里插入图片描述

z变换作用和特点

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

z变换例题

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

逆z变换

c在收敛区间内
在这里插入图片描述
在收敛圆环上做围线积分
在这里插入图片描述

因为围线积分很麻烦,求解逆z变换有三种方法

  • 幂级数
  • 留数定理
  • 部分分式

正变换和收敛域重要,逆变换用的不多

z变换表和逆变换计算方法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
部分分式,写成零点-极点式子

在这里插入图片描述
在这里插入图片描述

特别强调

对x(n-n0)做z变换:
Z ( X ( n − n 0 ) ) = Z − n 0 X ( z ) \boxed{ Z(X(n-n_{0})) = Z^{-n0} X(z)} Z(X(nn0))=Zn0X(z)
其中右式X(z)表示对X(n)做z变换

所以看到z的负幂次,实际实现的是系统的延迟

常用序列的z变换

记住:
R N ( n ) R_{N}(n) RN(n)在z->无穷时和u(n)相同)
在这里插入图片描述

【现在已经写了一万三千字了。。真不容易啊,您能看到这个地方也不容易】

【重要性质】Parseval 定理

【所有正交变换都满足该定理,后面DFT也会遇到】
本质上反映能量相同
在这里插入图片描述

离散时间系统

八位系统即可完成的A/D转换:数码相机(每个颜色8位)
24位:声卡【HD-CD就达到24w位】
12位:打电话的采样
采用不同采样精度的原因:钱。

一般把系统认为黑盒子,只研究输入输出的关系,不考虑实现:
系统
最常用:线性时不变系统,本课将主要研究此处

采样频率

z变换是DTFT的一般化,在系统里很有用。反映了频谱关系。
目前DTFT:频域上连续
DFT:频域上离散

离散化之后就不用积分了。
DFT延伸出FFT(更快计算)

字数太多老出BUG,本文就此完结。开新文章讲离散时间系统。

【感谢您阅读到这里的毅力】

  • 13
    点赞
  • 60
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值