信号与系统(8)- 复指数形式的傅里叶级数

本文详细介绍了傅里叶级数的两种实数形式和两种复数形式,阐述了负频率的概念及其物理意义。通过对比分析,揭示了傅里叶级数在信号分解中的重要作用,以及函数奇偶性对傅里叶级数的影响。傅里叶级数提供了一种将周期信号或有限区间信号分解为简单谐波成分的方法,对于理解和处理复杂信号至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

满足Direchlet条件的周期信号或特定时间区间的信号可以被傅里叶级数在功率上没有误差的表达,常见的傅里叶级数的形式有两种,即:
f ( t ) = a 0 2 + ∑ n = 1 + ∞ [ a n c o s ( n Ω t ) + b n s i n ( n Ω t ) ] a n = 2 t 2 − t 1 ∫ t 1 t 2 f ( t ) c o s ( n Ω t ) d t b n = 2 t 2 − t 1 ∫ t 1 t 2 f ( t ) s i n ( n Ω t ) d t \begin{aligned} f(t) &= \frac{a_0}{2}+\sum_{n=1}^{+\infty}[a_ncos(n\Omega t)+b_nsin(n\Omega t)] \\a_n&=\frac{2}{t_2-t_1}\int_{t_1}^{t_2}f(t)cos(n\Omega t)dt \\b_n&=\frac{2}{t_2-t_1}\int_{t_1}^{t_2}f(t)sin(n\Omega t)dt \end{aligned} f(t)anbn=2a0+n=1+[ancos(nΩt)+bnsin(nΩt)]=t2t12t1t2f(t)cos(nΩt)dt=t2t12t1t2f(t)sin(nΩt)dt

f ( t ) = a 0 2 + ∑ n = 1 + ∞ A n c o s ( n Ω t + φ n ) A n = a n 2 + b n 2 , φ n = − a r c t a n b n a n \begin{aligned} f(t)&=\frac{a_0}{2}+\sum_{n=1}^{+\infty}A_ncos(n\Omega t + \varphi_n) \\A_n &= \sqrt{a_n^2+b_n^2}, \\\varphi_n &= -arctan\frac{b_n}{a_n} \end{aligned} f(t)Anφn=2a0+n=1+Ancos(nΩt+φn)=an2+bn2 ,=arctananbn
这两种表达方式在物理上很容易理解,即信号可以被分解为一个直流分量,和一系列交流分量的叠加。除了这两种表达方式,傅里叶级数的复指数形式也是最常见的表达形式,这种形式在计算上具有很大的优势。

1. 如何获得傅里叶级数的复数形式?

和之前讨论的信号分解累,如果存在一组正交函数集,则信号可以通过正交函数集中的子信号的叠加进行表示。子信号的系数称为相关系数。相关内容可以回顾信号与系统(6)- 信号频域研究的思路及正交函数集。正弦函数集是一套正交函数集,除此之外,复指数函数也是正交函数集,即:
{ 1 , e j Ω t , e j 2 Ω t , e j 3 Ω t ⋯   , e j n Ω t } \{ 1, e^{j\Omega t }, e^{j2\Omega t }, e^{j3\Omega t }\cdots, e^{jn\Omega t }\} { 1,ejΩt,ej2Ωt,ej3Ωt,ejnΩt}
或记为:
{ e j n Ω t   ∣ n ∈ I } \{ e^{jn\Omega t }\space|n \in I \} { ejnΩt nI}
则信号 f ( t ) f(t) f(t)通过复指数正交函数集展开为:
f ( t ) = ∑ n = − ∞ + ∞ [ C n ⋅ e j ( n Ω t ) ] f(t)=\sum_{n=-\infty}^{+\infty}[C_n\cdot e^{j(n\Omega t)}] f(t)=n=+[Cnej(nΩt)]
注意求和上下限为从负无穷到正无穷,这意味着复指数形式的傅里叶变换会出现“负频率”。至于为什么出现负频率将在之后解答。

由之前正交函数集的知识可知,上式中系数 C n C_n Cn为:
C n = ∫ t 1 t 2 f ( t ) ⋅ ( e j n Ω t ) ∗ ∫ t 1 t 2 ( e j n Ω t ) ( e j n Ω t ) ∗ = 1 T ∫ t 1 t 2 f ( t ) e − j n Ω t d t C_n=\frac{\int_{t_1}^{t_2}f(t)\cdot (e^{j{n\Omega t}})^*}{\int_{t_1}^{t_2}(e^{j{n\Omega t}})(e^{j{n\Omega t}})^*} = \frac{1}{T}\int_{t_1}^{t_2}f(t)e^{-jn\Omega t}dt Cn=t1t2(ejnΩt)(ejnΩt)t1t2f(t)(ejnΩt)=T1t1t2f(t)ejnΩtdt
上式即为傅里叶级数的复数形式,其中 Ω = 2 π T \Omega = \frac{2\pi}{T} Ω=T2π,且 f ( t ) f(t) f(t)是周期为T的函数,故n取不同值时的周期信号具有谐波关系(即它们都具有一个共同周期T)。n=0时对应的这一项称为直流分量,n=1时具有基波频率,称为一次谐波或基波,类似的有二次谐波,三次谐波等等。

同之前讲述的实数范围内的傅里叶级数展开一样,复指数形式的傅里叶级数展开同样具有另一种表达方式。已知傅里叶级数为:
f ( t ) = a 0 2 + ∑ n = 1 + ∞ A n c o s ( n Ω t + φ n ) f(t)=\frac{a_0}{2}+\sum_{n=1}^{+\infty}A_ncos(n\Omega t + \varphi_n) f(t)=2a0+n=1+Ancos(nΩt+φn)
由欧拉公式:
c o s ω t = e j ω t + e − j ω t 2 cos\omega t = \frac{e^{j\omega t}+e^{-j\omega t}}{2} cosωt=2ejωt+ejωt
则:
f ( t ) = a 0 2 + ∑

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值