Opencv将图片中的手写数字一个一个单独的抠出来并保存到指定的文件夹

今天想要构建自己的MNIST数据集,但是一个一个手画然后拍照再把数字一个一个抠出来实在是太耗时了,所以想用程序解决这个问题:

下面附上程序:(备注:里面的代码是在之前某个博主的代码基础上改装过来的,具体是哪个我已经不记得了)

# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt


# 反相灰度图,将黑白阈值颠倒
def accessPiexl(img):
    height = img.shape[0]
    width = img.shape[1]
    for i in range(height):
       for j in range(width):
           img[i][j] = 255 - img[i][j]
    return img

# 反相二值化图像
def accessBinary(img, threshold=200):
    img = accessPiexl(img)
    # 边缘膨胀,不加也可以
    kernel = np.ones((3, 3), np.uint8)
    img = cv2.dilate(img, kernel, iterations=1)
    _, img = cv2.threshold(img, threshold, 0, cv2.THRESH_TOZERO)

    return img

# 寻找边缘,返回边框的左上角和右下角(利用cv2.findContours)
def findBorderContours(path, maxArea=50):
    img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)#(cv2.IMREAD_GRAYSCALE)按灰度模式读取图像
    img = accessBinary(img)
    contours, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)#(cv2.RETR_EXTERNAL)检测边缘,(cv2.CHAIN_APPROX_NONE)绘制
    borders = []
    border_sortt = []
    # print("打印",hierarchy)
    for contour in contours:
        # 将边缘拟合成一个边框
        x, y, w, h = cv2.boundingRect(contour)
        if w*h > maxArea:
            border = [(x, y), (x+w, y+h)]
            borders.append(border)

    return borders

# 显示结果及边框
def Save_Results(path, borders):
    img = cv2.imread(path)
    # 绘制
    print(img.shape)
    for i, border in enumerate(borders):

        print("border = ",border)
        pic = img[border[0][1] - 30 :border[1][1] + 30 , border[0][0] - 30 : border[1][0] + 30]
        # cv2.imshow("img",pic)
        # cv2.waitKey(0)

        cv2.imwrite("D:/0000{num}.jpg".format(num=i),pic)


if __name__ == '__main__':
    # 综合测试
    path = './1.jpg'
    borders = findBorderContours(path) #要抠图的原图片
    Aave_Results(path, borders)
显示效果:

原图:
在这里插入图片描述
处理后的:

在这里插入图片描述
在这里插入图片描述

处理的结果勉勉强强,勿喷

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

季南枫(JIM)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值