算法提高——秘密行动

问题描述
小D接到一项任务,要求他爬到一座n层大厦的顶端与神秘人物会面。

这座大厦有一个神奇的特点,每层的高度都不一样。

同时,小D也拥有一项特殊能力,可以一次向上跳跃一层或两层,但是这项能力无法连续使用。

已知向上1高度消耗的时间为1,跳跃不消耗时间。由于事态紧急,小D想知道他最少需要多少时间到达顶层。
  
输入格式
第一行包含一个整数 n,代表楼的高度。
接下来n行每行一个整数 ai,代表i层的楼层高度(ai ≤ 100)。
  
输出格式
输出1行,包含一个整数,表示所需的最短时间。

样例输入
5
3
5
1
8
4

样例输出
1

数据范围
对20%的数据, n ≤ 10
对40%的数据, n ≤ 100
对60%的数据, n ≤ 5000
对100%的数据, n ≤ 10000


题解
动态规划:

f[i][0]: 走到第 i 层,无跳跃能力,所消耗的时间。
f[i][1] :走到第 i 层,有跳跃能力,所消耗的时间。

  • 情况一:若在第 i 层无跳跃能力,则前一步必然是从第 i - 1 层 or 第 i - 2 层跳过来的。
    f[i][0] = min(f[i - 1][1], f[i - 2][1])

  • 情况二:若在第 i 层有跳跃能力,则前一步必然是从第 i - 1 层 爬过来的,且 第 i - 1 层有两种状态,无跳跃能力 or 有跳跃能力(可以跳,但是我选择不跳 (ˉ▽ ̄~) )
    f[i][1] = min(f[i - 1][0], f[i - 1][1]) + h[i]

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 10010;

int h[N], f[N][2];

int main()
{
	int n;
	cin >> n;
	
	for (int i = 1; i <= n; i ++) cin >> h[i];
	
	f[1][0] = 0;
	f[1][1] = h[1];
	f[2][0] = 0;
	f[2][1] = h[2];
	for (int i = 3; i <= n; i ++)
	{
		f[i][1] = min(f[i - 1][0], f[i - 1][1]) + h[i];
		f[i][0] = min(f[i - 1][1], f[i - 2][1]);
	}
	
	cout << min(f[n][0], f[n][1]) << endl;
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值