问题描述
小D接到一项任务,要求他爬到一座n层大厦的顶端与神秘人物会面。
这座大厦有一个神奇的特点,每层的高度都不一样。
同时,小D也拥有一项特殊能力,可以一次向上跳跃一层或两层,但是这项能力无法连续使用。
已知向上1高度消耗的时间为1,跳跃不消耗时间。由于事态紧急,小D想知道他最少需要多少时间到达顶层。
输入格式
第一行包含一个整数 n,代表楼的高度。
接下来n行每行一个整数 ai,代表i层的楼层高度(ai ≤ 100)。
输出格式
输出1行,包含一个整数,表示所需的最短时间。
样例输入
5
3
5
1
8
4
样例输出
1
数据范围
对20%的数据, n ≤ 10
对40%的数据, n ≤ 100
对60%的数据, n ≤ 5000
对100%的数据, n ≤ 10000
题解
动态规划:
f[i][0]
: 走到第 i 层,无跳跃能力,所消耗的时间。
f[i][1]
:走到第 i 层,有跳跃能力,所消耗的时间。
-
情况一
:若在第 i 层无跳跃能力,则前一步必然是从第 i - 1 层
or第 i - 2 层
跳过来的。
∴f[i][0] = min(f[i - 1][1], f[i - 2][1])
-
情况二
:若在第 i 层有跳跃能力,则前一步必然是从第 i - 1 层
爬过来的,且第 i - 1 层
有两种状态,无跳跃能力 or 有跳跃能力(可以跳,但是我选择不跳 (ˉ▽ ̄~) )
∴f[i][1] = min(f[i - 1][0], f[i - 1][1]) + h[i]
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 10010;
int h[N], f[N][2];
int main()
{
int n;
cin >> n;
for (int i = 1; i <= n; i ++) cin >> h[i];
f[1][0] = 0;
f[1][1] = h[1];
f[2][0] = 0;
f[2][1] = h[2];
for (int i = 3; i <= n; i ++)
{
f[i][1] = min(f[i - 1][0], f[i - 1][1]) + h[i];
f[i][0] = min(f[i - 1][1], f[i - 2][1]);
}
cout << min(f[n][0], f[n][1]) << endl;
return 0;
}