AcWing 789. 数的范围

问题描述

给定一个按照升序排列的长度为 n 的整数数组,以及 q q q个查询。

对于每个查询,返回一个元素 k k k的起始位置和终止位置(位置从 0 0 0开始计数)。

如果数组中不存在该元素,则返回 -1 -1

输入格式:

第一行包含整数 n n n q q q,表示数组长度和询问个数。

第二行包含 n n n个整数(均在 1 ∼ 10000 1∼10000 110000范围内),表示完整数组。

接下来 q q q行,每行包含一个整数 k k k,表示一个询问元素。

输出格式:

q q q行,每行包含两个整数,表示所求元素的起始位置和终止位置。

如果数组中不存在该元素,则返回 -1 -1

数据范围

1 ≤ n ≤ 100000 1≤n≤100000 1n100000
1 ≤ q ≤ 10000 1≤q≤10000 1q10000
1 ≤ k ≤ 10000 1≤k≤10000 1k10000

输入样例:

6 3
1 2 2 3 3 4
3
4
5

输出样例:

3 4
5 5
-1 -1

思路

1、由题意知,该题可以用二分来做,具有单调性。有单调性一定能二分,但是能二分的不一定都有单调性。
2、如果q[mid] <= x 则要更新成 l = mid , r = mid - 1此时 mid = l + r + 1 >> 1要加上1了。
3、如果q[mid] >= x 则要更新成 r = mid , l = mid +1

原题链接

C++代码:

#include <iostream>

using namespace std;

const int N = 100010;

int n, m;
int q[N];

int main()
{
    scanf("%d%d", &n, &m);

    for (int i = 0; i < n; i ++ )   scanf("%d", &q[i]);
    
    while (m -- )
    {
        int x;
        scanf("%d", &x);
        
        int l = 0, r = n - 1;
        //二分出不大于x最大的小标
        while (l < r)
        {
            int mid = l + r >> 1;
            if (q[mid] >= x) r = mid;
            else l = mid + 1;
        }
        
        if (q[l] != x) cout << "-1 -1" << endl;
        else
        {
            cout << l << ' ';
            
            int l = 0, r = n - 1;
            //二分出不小于x最大的下标
            while (l < r)
            {
                int mid = l + r + 1 >> 1;
                if (q[mid] <= x) l = mid;
                else r = mid - 1;
            }
            cout << l << endl;
        }
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值