问题描述
给定一个按照升序排列的长度为 n 的整数数组,以及 q q q个查询。
对于每个查询,返回一个元素 k k k的起始位置和终止位置(位置从 0 0 0开始计数)。
如果数组中不存在该元素,则返回 -1 -1
。
输入格式:
第一行包含整数 n n n和 q q q,表示数组长度和询问个数。
第二行包含 n n n个整数(均在 1 ∼ 10000 1∼10000 1∼10000范围内),表示完整数组。
接下来 q q q行,每行包含一个整数 k k k,表示一个询问元素。
输出格式:
共 q q q行,每行包含两个整数,表示所求元素的起始位置和终止位置。
如果数组中不存在该元素,则返回 -1 -1
。
数据范围
1
≤
n
≤
100000
1≤n≤100000
1≤n≤100000
1
≤
q
≤
10000
1≤q≤10000
1≤q≤10000
1
≤
k
≤
10000
1≤k≤10000
1≤k≤10000
输入样例:
6 3
1 2 2 3 3 4
3
4
5
输出样例:
3 4
5 5
-1 -1
思路
1、由题意知,该题可以用二分来做,具有单调性。有单调性一定能二分,但是能二分的不一定都有单调性。
2、如果q[mid] <= x 则要更新成 l = mid , r = mid - 1此时 mid = l + r + 1 >> 1要加上1了。
3、如果q[mid] >= x 则要更新成 r = mid , l = mid +1
C++代码:
#include <iostream>
using namespace std;
const int N = 100010;
int n, m;
int q[N];
int main()
{
scanf("%d%d", &n, &m);
for (int i = 0; i < n; i ++ ) scanf("%d", &q[i]);
while (m -- )
{
int x;
scanf("%d", &x);
int l = 0, r = n - 1;
//二分出不大于x最大的小标
while (l < r)
{
int mid = l + r >> 1;
if (q[mid] >= x) r = mid;
else l = mid + 1;
}
if (q[l] != x) cout << "-1 -1" << endl;
else
{
cout << l << ' ';
int l = 0, r = n - 1;
//二分出不小于x最大的下标
while (l < r)
{
int mid = l + r + 1 >> 1;
if (q[mid] <= x) l = mid;
else r = mid - 1;
}
cout << l << endl;
}
}
return 0;
}