买卖股票的最佳时机II

本文探讨了如何利用动态规划解决股票交易问题,针对单只股票的多次买卖,计算持有和不持有股票的最大现金收益。通过构建dp数组,理解持有和不持有股票的状态转移,揭示了在买卖决策中的关键计算过程。最终实现了一个时间复杂度为O(n)的空间复杂度为O(n)的解决方案。
摘要由CSDN通过智能技术生成

在这里插入图片描述

思路

本题和121. 买卖股票的最佳时机的唯一区别本题股票可以买卖多次了(注意只有一只股票,所以再次购买前要出售掉之前的股票)

这里重申一下dp数组的含义:

dp[i][0] 表示第i天持有股票所得现金。
dp[i][1] 表示第i天不持有股票所得最多现金

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]

注意这里和121. 买卖股票的最佳时机唯一不同的地方,就是推导dp[i][0]的时候,第i天买入股票的情况。

在121. 买卖股票的最佳时机中,因为股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。

而本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。

那么第i天持有股票即dp[i][0],如果是第i天买入股票,所得现金就是昨天不持有股票的所得现金 减去 今天的股票价格 即:dp[i - 1][1] - prices[i]

在来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来

第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
第i天卖出股票,所得现金就是按照今天股票佳价格卖出后所得现金即:prices[i] + dp[i - 1][0]

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        vector<vector<int>> dp(prices.size(),vector<int>(2));
        dp[0][0]=-prices[0];
        dp[0][1]=0;
        for(int ii=1;ii<prices.size();ii++){
            dp[ii][0]=max(dp[ii-1][0],dp[ii-1][1]-prices[ii]);//
            dp[ii][1]=max(dp[ii-1][1],dp[ii-1][0]+prices[ii]);
        }
        return max(dp[prices.size()-1][0],dp[prices.size()-1][1]);
    }
};
时间复杂度:O(n)
空间复杂度:O(n)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值