一起深度学习——CIFAR10

目的:

实现从数据集中进行分类,一共有10个类别。

实现步骤:

1、导包:

import collections

import torch
from torch import nn
from d2l import torch as d2l
import shutil
import os
import math
import pandas as pd
import torchvision

2、下载数据集

#下载数据集
d2l.DATA_HUB['cifar10_tiny'] = (d2l.DATA_URL + 'kaggle_cifar10_tiny.zip',
                                '2068874e4b9a9f0fb07ebe0ad2b29754449ccacd')

# 如果使用完整的Kaggle竞赛的数据集,设置demo为False
demo = True

if demo:
    data_dir = d2l.download_extract('cifar10_tiny')
else:
    data_dir = '../data/kaggle/cifar-10/'

3、整理数据集

ef read_csv_labels (fname):
    with open(fname,'r') as f:
        lines = f.readlines()[1:] #[1:0]表示从第二行开始读取,因为第一行是行头

    # 按照逗号分割每一行, 且rstrip 去除每行末尾的换行符
    # eg: ["apple,orange,banana\n"] => [['apple','orange','banana']]
    tokens = [l.rstrip().split(',') for l in lines]
    
    return dict((name,label) for name, label in tokens)

labels = read_csv_labels(os.path.join(data_dir,'trainLabels.csv'))

4、将验证集从原始的训练集中拆分出来

def copyfile(filename,target_dir):
    os.makedirs(target_dir,exist_ok=True)
    shutil.copy(filename,target_dir)

# print("训练样本:",len(labels))
# print("类别:",len(set(labels.values())))
def reorg_train_valid(data_dir,labels,valid_ratio):
    # Counter :用于计算每个类别出现的次数
    # most_common() :用于统计返回出现次数最多的元素(类别,次数),是一个列表,并且按照次数降序的方式存储
    # 【-1】表示取出列表中的最后一个元组。
    # 【1】 表示取出该元组的次数。
    n = collections.Counter(labels.values()).most_common()[-1][1]
    # math.floor(): 向下取整  math.ceil(): 向上取整
    # 每个类别分配给验证集的最小个数
    n_valid_per_label = max(1,math.floor((n * valid_ratio)))

    label_count = {}
    for photo in os.listdir(os.path.join(data_dir,'train')):
        label = labels[photo.split('.')[0]] #取出该标签所对应的类别
        # print(train_file)
        fname = os.path.join(data_dir,'train',photo)
        copyfile(fname,os.path.join(data_dir,'train_valid_test','train_valid',label))

        #如果该类别没有在label_count中或者是 数量小于规定的最小值,则将其复制到验证集中
        if label not in label_count or label_count[label] < n_valid_per_label:
            copyfile(fname,os.path.join(data_dir,'train_valid_test','valid',label))
            label_count[label] = label_count.get(label,0) +1
        else:
            copyfile(fname,os.path.join(data_dir,'train_valid_test','train',label))
    return n_valid_per_label

def reorg_test(data_dir):
    for test_file in os.listdir(os.path.join(data_dir,'test')):
        copyfile(os.path.join(data_dir,'test',test_file), os.path.join(data_dir,'train_valid_test','test','unknown'))


def reorg_cifar10_data(data_dir,valid_ratio):
    labels = read_csv_labels(os.path.join(data_dir,'trainLabels.csv'))
    reorg_train_valid(data_dir,labels,valid_ratio)
    reorg_test(data_dir)

batch_size = 32 if demo else 128
valid_ratio = 0.1
reorg_cifar10_data(data_dir,valid_ratio)
"""
结果会生成一个train_valid_test的文件夹,里面有:
- test文件夹---unknow文件夹:5张没有标签的测试照片
- train_valid文件夹---10个类被的文件夹:每个文件夹包含所属类别的全部照片
- train文件夹--10个类别的文件夹:每个文件夹下包含90%的照片用于训练
- valid文件夹--10个类别的文件夹:每个文件夹下包含10%的照片用于验证
"""

5、数据增强

transform_train = torchvision.transforms.Compose([
    # 原本图像是32*32,先放大成40*40, 在随机裁剪为32*32,实现训练数据的增强
    torchvision.transforms.Resize(40),
    torchvision.transforms.RandomResizedCrop(32, scale=(0.64, 1.0), ratio=(1.0, 1.0)),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize(
        [0.4914, 0.4822, 0.4465],[0.2023, 0.1994, 0.2010]
    )
])
transform_test = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor(),
    # 标准化图像的每个通道 : 消除评估结果中的随机性
    torchvision.transforms.Normalize(
        [0.4914, 0.4822, 0.4465],[0.2023, 0.1994, 0.2010]
    )
])

6、加载数据集

#加载数据集
train_ds,train_valid_ds = [
    torchvision.datasets.ImageFolder(os.path.join(data_dir,'train_valid_test',folder),transform=transform_train)
    for folder in ['train','train_valid']
]
valid_ds, test_ds = [
    torchvision.datasets.ImageFolder(
        os.path.join(data_dir, 'train_valid_test', folder), transform=transform_test
    ) for folder in ['valid', 'test']
]
#定义迭代器
train_iter, train_valid_iter = [
    torch.utils.data.DataLoader(
        dataset, batch_size, shuffle=True, drop_last=True
    ) for dataset in (train_ds, train_valid_ds)
]

valid_iter = torch.utils.data.DataLoader(
    valid_ds,batch_size,shuffle=False,drop_last=True
)
test_iter = torch.utils.data.DataLoader(
    test_ds,batch_size,shuffle=False,drop_last=False
)


7、定义训练模型:

def get_net():
    num_classes = 10 #输出标签
    net = d2l.resnet18(num_classes,in_channels=3)
    return net

损失函数:

#损失函数
loss = nn.CrossEntropyLoss(reduction='none')


8、定义训练函数:

#定义训练函数
def train(net,train_iter,valid_iter,num_epochs,lr,wd,devices,lr_period,lr_decay):
    trainer = torch.optim.SGD(net.parameters(),lr=lr,momentum=0.9,weight_decay=wd)
    #学习率调度器:在经过lr_period个epoch之后,将学习率乘以lr_decay.
    scheduler = torch.optim.lr_scheduler.StepLR(trainer,lr_period,lr_decay)
    num_batches,timer = len(train_iter),d2l.Timer()
    legend = ['train_loss','train_acc']
    if valid_iter is not None:
        legend.append('valid_acc')
    animator = d2l.Animator(xlabel='epoch',xlim=[1,num_epochs],legend=legend)
    net = nn.DataParallel(net,device_ids=devices).to(devices[0])

    for epoch in range(num_epochs):
        # 设置为训练模式
        net.train()
        metric = d2l.Accumulator(3)
        for i,(X,y) in enumerate(train_iter):
            timer.start()
            l,acc = d2l.train_batch_ch13(net,X,y,loss,trainer,devices)
            metric.add(l,acc,y.shape[0])
            timer.stop()
            if (i + 1) % (num_batches // 5 ) ==0 or i == num_batches - 1:
                animator.add(epoch + (i + 1)/num_batches,(metric[0]/metric[2],metric[1]/metric[2],None))

        if valid_iter is not None:
            valid_acc = d2l.evaluate_accuracy_gpu(net,valid_iter)
            animator.add(epoch+1,(None,None,valid_acc))
        scheduler.step()  #更新学习率
    measures = (f'train loss {metric[0] / metric[2]:.3f},'
                f'train acc{metric[1] / metric[2]:.3f}')
    if valid_iter is not None:
        measures += f', valid acc {valid_acc:.3f}'
    print(measures + f'\n{metric[2] * num_epochs / timer.sum():.1f}'
                     f'example/sec on {str(devices)}')

9、定义参数,开始训练:


import time

# 在开头设置开始时间
start = time.perf_counter()  # start = time.clock() python3.8之前可以

# 训练和验证模型
devices, num_epochs, lr, wd = d2l.try_all_gpus(), 100, 2e-4, 5e-4
lr_period, lr_decay, net = 4, 0.9, get_net()
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period, lr_decay)

# 在程序运行结束的位置添加结束时间
end = time.perf_counter()  # end = time.clock()  python3.8之前可以

# 再将其进行打印,即可显示出程序完成的运行耗时
print(f'运行耗时{(end-start):.4f}')

  • 11
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 使用TensorFlow进行深度学习的CIFAR-10数据集的模型训练和识别可以遵循以下步骤: 1. 导入必要的库和CIFAR-10数据集:首先,需要导入TensorFlow和其他必要的库(例如numpy、matplotlib等),并下载CIFAR-10数据集。可以使用TensorFlow内置的数据集API或手动下载数据集。 2. 数据预处理:在将数据提供给模型之前,需要对数据进行预处理,例如将像素值归一化、对标签进行独热编码等。 3. 构建模型:可以使用TensorFlow的高级API(例如Keras)来构建深度学习模型。通常,使用卷积神经网络(CNN)来处理图像数据。可以根据任务的要求设计适当的网络结构。 4. 模型编译和训练:在将数据提供给模型之前,需要对数据进行预处理,例如将像素值归一化、对标签进行独热编码等。使用适当的优化器和损失函数来编译模型,并使用训练集训练模型。 5. 模型评估:在训练模型后,可以使用测试集对模型进行评估。可以计算准确率、损失函数值等指标。 6. 模型应用:在模型训练和评估后,可以使用模型进行预测。提供新的输入数据,模型将返回预测结果。 总之,使用TensorFlow进行CIFAR-10数据集的深度学习模型训练和识别需要对数据进行预处理、构建CNN模型、编译和训练模型、评估模型以及应用模型进行预测。 ### 回答2: 深度学习是一种以神经网络为基础的机器学习方法,而TensorFlow是一个由谷歌公司开发的支持深度学习的开源框架。在TensorFlow框架下,使用卷积神经网络(Convolutional Neural Network,CNN)对CIFAR-10数据集进行分类是一个非常经典的任务。 CIFAR-10数据集包含了10个不同的分类标签,包括飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车,每类数据有5000个训练样本和1000个测试样本。因此,模型的训练可以使用训练集进行,而测试过程则基于测试集进行。 在构建CNN模型时,可以使用序列化API(Sequential API)或函数式API(Functional API)进行设计和开发。对于序列化API,可以选择将不同的深度网络层(如卷积层、池化层、全连接层等)按照顺序叠加组合。而对于函数式API,则允许具有多个输入和输出的复杂模型。典型的CNN模型包括卷积层、池化层和全连接层。 在模型训练过程中,常用的优化器是随机梯度下降(Stochastic gradient descent,SGD)。还可以使用其他优化算法,如动量法(Momentum),Adagrad和Adam。同时,在训练过程中,需要考虑过拟合的问题,采取常用的对策如正则化、dropout等。 在模型训练完成后,测试模型将是一个核心的任务。可以通过计算模型的精确性(accuracy)和损失函数(loss)来验证模型的准确性。而常用的评估指标还包括ROC曲线、AUC值等。 总之,TensorFlow的深度学习在CIFAR-10数据集上的模型训练与识别任务是一个非常具有挑战性的任务。它需要深入理解神经网络的架构和特性,同时也需要熟悉常用的训练算法和评估指标。随着不断发展的人工智能技术和深度学习模型,TensorFlow在各个领域的应用前景非常广阔。 ### 回答3: TensorFlow是一个深度学习框架,广泛应用于研究和工业应用中。CIFAR10是一个广泛使用的图像分类数据集,由10个类别的60000张32x32像素图像组成。 TensorFlow提供了许多工具和API来训练和识别基于CIFAR10数据集的模型。 1. 准备数据 CIFAR10数据集可以从网上下载,通过使用Python编写脚本可以将其转换成可用于TensorFlow训练和识别的格式。例如,使用TensorFlow的数据输入库,可以将图像预处理,并将其转换为模型输入的batch格式。 2. 定义模型 可以使用TensorFlow构建各种类型的神经网络来训练CIFAR10数据集,如卷积神经网络(CNN)和循环神经网络(RNN)。TensorFlow提供的各种API可以方便地定义网络的结构和层,从而创建一个高效的图像分类器。 3. 训练模型 要训练模型,需要使用TensorFlow的优化器来计算和调整网络权重和偏置,以最小化损失函数。在训练期间,还需要定义一些指标来监控模型的性能和进度。可以使用TensorFlow提供的训练API,创建训练循环,并针对单个或多个GPU进行分布式训练。 4. 评估和测试模型 为确保神经网络在完全独立于训练数据的环境中运行良好,需要对其进行评估和测试。可以使用TensorFlow提供的API,对模型的准确性和性能进行评估。评估模型时,可以使用验证数据集,在训练过程中监控模型的泛化性能,避免过拟合。 5. 部署模型 一旦模型经过训练并通过评估,就可以使用TensorFlow的模型导出和转换工具,将其部署到生产环境中。TensorFlow支持将模型导出为TensorFlow Lite格式,以在移动设备上运行,并提供了Java,C++和Python等多种语言的API,便于将模型嵌入到应用程序中。 总之,TensorFlow提供了几种方法来训练和识别CIFAR10数据集上的模型。可以结合使用TensorFlow的API,优化器和分布式训练工具,以提高模型效率和性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值