图相似度j计算——SimGNN

论文链接:

SimGNN: A Neural Network Approachto Fast Graph Similarity Computation

个人理解:

重中之重就是理解该图:
在这里插入图片描述
逐步来击破这幅图吧。

数据处理:

论文中给定的例子所提供的数据是 json 格式。
读取数据:

train_graphs = glob.glob('data/train/'+'*.json')
test_graphs = glob.glob('data/test/'+'*.json')

看提供的图可得知,特征为one-hot 编码,将数据处理成需要的格式。

1、获取图节点所拥有的所有特征!

def node_mapping():
    nodes_id = set()
    graph_pairs = train_graphs + test_graphs
    for graph_pair in graph_pairs:
        graph = json.load(open(graph_pair))
        nodes_id = nodes_id.union(set(graph['labels_1']))
        nodes_id = nodes_id.union(set(graph['labels_2']))
    nodes_id = sorted(nodes_id)
    nodes_id = {id:index for index,id in enumerate(nodes_id)}
    num_nodes_id = len(nodes_id)
    print(nodes_id,num_nodes_id)
    return nodes_id,num_nodes_id

l理解上述代码:
理解node_mapping()函数的作用:
例如: graph1.json:{
“labels_1”: [“A”, “B”, “C”],
“labels_2”: [“D”, “E”] } =>train_graph graph2.json:{
“labels_1”: [“C”, “F”],
“labels_2”: [“A”, “G”] } => test_graph 执行: graph_pairs = train_graphs + test_graphs 得:=> graph_pairs =
[‘graph1.json’,‘graph2.json’]

执行: for graph_pair in graph_pairs: 第一个循环:graph =
json.load(open(‘graph1.json’)) 得: #graph = {“labels_1”: [“A”, “B”,
“C”], “labels_2”: [“D”, “E”]}

nodes_id = nodes_id.union(set(graph[‘labels_1’])) # {“A”, “B”, “C”}
nodes_id = nodes_id.union(set(graph[‘labels_2’])) # {“A”, “B”, “C”,
“D”, “E”}

第二个循环:graph = json.load(open(‘graph2.json’)) 得: #graph = {“labels_1”:
[“C”, “F”], “labels_2”: [“A”, “G”]} nodes_id =
nodes_id.union(set(graph[‘labels_1’])) # {“A”, “B”, “C”, “D”, “E”,
“F”} nodes_id = nodes_id.union(set(graph[‘labels_2’])) # {“A”, “B”,
“C”, “D”, “E”, “F”, “G”}

执行: nodes_id = sorted(nodes_id) 进行排序 得: # [“A”, “B”, “C”, “D”, “E”,
“F”, “G”]

执行: nodes_id = {id:index for index,id in enumerate(nodes_id)} 进行索引的建立
得:# nodes_id = {“A”: 0, “B”: 1, “C”: 2, “D”: 3, “E”: 4, “F”: 5, “G”:
6} 简简单单理解这段代码,作用也就是完成one-hot 编码的建立

2、创建数据加载器:

def load_dataset():
    train_dataset = []
    test_dataset = []
    nodes_id, num_nodes_id = node_mapping()

    for graph_pair in train_graphs:
        graph = json.load(open(graph_pair))
        data = process_data(graph,nodes_id)
        train_dataset.append(data)
    for graph_pair in test_graphs:
        graph = json.load(open(graph_pair))
        data = process_data(graph, nodes_id)
        test_dataset.append(data)
    return train_dataset,test_dataset,num_nodes_id

其中,process_data() 函数:

def process_data(graph,nodes_id):
    data = dict()

    # 获取每个图的邻接矩阵
    edges_1 = graph['graph_1'] + [[y,x] for x,y in graph['graph_1']]
    edges_2 = graph['graph_2'] + [[y,x] for x,y in graph['graph_2']]
    edges_1 = torch.from_numpy(np.array(edges_1,dtype=np.int64).T).type(torch.long)
    edges_2 = torch.from_numpy(np.array(edges_2,dtype=np.int64).T).type(torch.long)

    data['edge_index_1'] = edges_1
    data['edge_index_2'] = edges_2

    feature_1 ,feature_2 = [],[]
    for n in graph['labels_1']:
        feature_1.append([1.0 if nodes_id[n] == i else 0.0 for i in nodes_id.values()])
    for n in graph['labels_2']:
        feature_2.append([1.0 if nodes_id[n] == i else 0.0 for i in nodes_id.values()])

    feature_1 = torch.FloatTensor(np.array(feature_1))
    feature_2 = torch.FloatTensor(np.array(feature_2))

    data['features_1'] = feature_1
    data['features_2'] = feature_2

    norm_ged = graph['ged'] / (0.5 * (len(graph['labels_1']) +len(graph['labels_2'])))
    data['norm_ged'] = norm_ged

    data["target"] = torch.from_numpy(np.exp(-norm_ged).reshape(1, 1)).view(-1).float().unsqueeze(0)

    return data

理解process_data ()函数:
理解process_data()函数的作用:
数据假设: {
“graph_1”: [[0, 1], [1, 2]], // 边的列表
“graph_2”: [[0, 2], [2, 3]],
“labels_1”: [“A”, “B”, “C”], // 图1的节点标签
“labels_2”: [“A”, “C”, “D”], // 图2的节点标签
“ged”: 2 // 图编辑距离 } 使用node_mapping()得到:nodes_id = {“A”: 0, “B”: 1, “C”: 2, “D”: 3, “E”: 4, “F”: 5, “G”: 6} 执行:edges_1 =
graph[‘graph_1’] + [[y, x] for x, y in graph[‘graph_1’]] 得: # [[0,
1], [1, 2], [1, 0], [2, 1]] 前部分是获取正向边,后边是添加反向边 执行:edges_2 =
graph[‘graph_2’] + [[y, x] for x, y in graph[‘graph_2’]] 得: # [[0,
2], [2, 3], [2, 0], [3, 2]]

执行:edges_1 = torch.from_numpy(np.array(edges_1,
dtype=np.int64).T).type(torch.long) 得:将其转换为tensor类型

第一个循环: 执行:for n in graph[‘labels_1’]: # [“A”, “B”, “C”]
执行:feature_1.append([1.0 if nodes_id[n] == i else 0.0 for i in
nodes_id.values()]) 得:

feature_1 = [

  [ A ,  B ,  C ,  D , E  ,  F ,  G ]

[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # “A”

[0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], # “B”

[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0] # “C” 第二个循环: for n in graph[‘labels_2’]: # [“A”, “C”, “D”]

feature_2.append([1.0 if nodes_id[n] == i else 0.0 for i in nodes_id.values()])

feature_2 = [

[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # “A”

[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], # “C”

[0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] # “D”

]

执行:feature_1 = torch.FloatTensor(np.array(feature_1)) 得:将其转换为张量

计算ged: norm_ged = graph['ged'] / (0.5 * (len(graph['labels_1']) + len(graph['labels_2'])))

norm_ged = 2 / (0.5 * (3 + 3)) = 2 / 3 = 0.6667

计算目标值: data['target'] = torch.from_numpy(np.exp(-norm_ged).reshape(1,

1)).view(-1).float().unsqueeze(0)

target = torch.from_numpy(np.exp(-0.6667).reshape(1, 1)).view(-1).float().unsqueeze(0)

target = torch.tensor([[0.5134]])

理解一下ged: Graph Edit Distance :图编辑距离 Ged 是衡量两个图之间的相似度的标识,ged越小,则越相似。 ged 是表示将一个图转变为另一个图的最小操作数(节点和边的添加、删除、替换等)。

norm_ged = GED / (0.5 * (V1 + V2 )) 其中V1和V2 是两个图的节点。

理解一下target: target = exp(-norm_ged),很多公式都会取负指数,因为这样能够将数值限定在0到1之间。

到这就完成了数据的处理。

卷积层:

在这里插入图片描述

这层直接调用就行,无需过多了解。

注意力层

在这里插入图片描述
论文中的公式如下:
在这里插入图片描述

class AttentionModule(nn.Module):
    def __init__(self,args):
        super(AttentionModule,self).__init__()
        self.args = args
        self.setup_weights()
        self.init_parameters()

    def setup_weights(self):
        # 创建权重矩阵(并未赋值),fiLters_3 = 32
        self.weight_matrix = nn.Parameter(torch.Tensor(self.args.filters_3, self.args.filters_3))
    def init_parameters(self):
        # 为权重矩阵进行赋值。
        nn.init.xavier_uniform_(self.weight_matrix)

    def forward(self, embedding):
        # embedding:(num_nodes=14, num_features=32)
        # 在每个特征维度上,取节点平均值
        # 执行torch.matmul(embedding, self.weight_matrix)=>[14,32]
        # 执行torch.mean(,dim=0) => [32,] 其实就是一行32列
        global_context = torch.mean(torch.matmul(embedding, self.weight_matrix), dim=0)
        # [32,] => [32,]
        transformed_global = torch.tanh(global_context)

        # sigmoid_scores计算每个节点与图之间的相似性得分(注意力)
        # sigmoid_scores:(14)
        # 执行:transormed_global.view(-1,1) [32,]=> [32,1]
        # 执行:torch.mm() =>矩阵乘法=>[14,32] × [32,1] = [14,1],
        # 注意:这里的实现并没有完全跟论文相同,缺少了一个转置,放在下一步实现了
        sigmoid_scores = torch.sigmoid(torch.mm(embedding, transformed_global.view(-1, 1)))

        # representation:图的嵌入(32)
        # 执行:torch.t(embedding) [14,32] =>[32,14]
        # 执行:torch.mm() [32,14] * [14,1] =>[32,1]
        representation = torch.mm(torch.t(embedding), sigmoid_scores)

        return representation

张量网络层:

在这里插入图片描述
张量网络层的公式如下:
在这里插入图片描述

class TensorNetworkModule(nn.Module):
    def __init__(self,args):
        super(TensorNetworkModule,self).__init__()
        self.args = args
        self.setup_weights()
        self.init_parameters()

    def setup_weights(self):
        # tensor_neurons 表示神经元数目
        # 三维张量 M
        self.weight_matrix = nn.Parameter(torch.Tensor(self.args.filters_3, self.args.filters_3, self.args.tensor_neurons))
        # 权重矩阵 V
        self.weight_matrix_block = nn.Parameter(torch.Tensor(self.args.tensor_neurons,2*self.args.filters_3))
        # 偏置向量 b
        self.bias = nn.Parameter(torch.Tensor(self.args.tensor_neurons,1))
    def init_parameters(self):
        nn.init.xavier_uniform_(self.weight_matrix)
        nn.init.xavier_uniform_(self.weight_matrix_block)
        nn.init.xavier_uniform_(self.bias)

    def forward(self,embedding_1,embedding_2):
        # 这一部分实现:h1^T * M * h2
        # embedding_1 = [32,1] 经转置=> [1,32]
        # M = [32,32,16]
        # scoring = [1,32] * [32,512] = [1,512]
        scoring = torch.mm(torch.t(embedding_1),self.weight_matrix.view(self.args.filters_3,-1))
        # scoring = [32,16]
        scoring = scoring.view(self.args.filters_3,self.args.tensor_neurons) # shape=[32,16]
        # scoring = [16,1]
        scoring = torch.mm(torch.t(scoring),embedding_2) # shape = [16,1]
        # 就是论文中将两个嵌入向量叠加起来
        combined_representation = torch.cat((embedding_1,embedding_2))
        # V*[]
        block_scoring = torch.mm(self.weight_matrix_block,combined_representation)

        scores = F.relu(scoring + block_scoring +self.bias)

        return scores

理解这一部分张量网络:
根据SimGNN论文中的公式: 假设embedding_1 和 embedding_2 都为
[32,1],self.args.filters_3=32,self.args.tensor_neurons=16 可得:
self.weight_matrix = [32,32,16]
self.weight_matrix_block = [16,64]
self.bias = [16,1] 问题一:M 为啥是三维的权重矩阵呢? 例子中的M是[32,32,16] 表示k = 16个32*32的矩阵

定义simgnn网络模型:

class SimGNN(nn.Module):
    def __init__(self,args,num_nodes_id):
        super(SimGNN,self).__init__()
        self.args = args

        self.num_nodes_id = num_nodes_id
        self.setup_layers()

    # 是否使用直方图
    def calculate_bottleneck_features(self):
        if self.args.histogram == True:
            self.feature_count = self.args.tensor_neurons + self.args.bins
        else:
            self.feature_count = self.args.tensor_neurons
    def setup_layers(self):
        self.calculate_bottleneck_features()
        self.convolution_1 = GCNConv(self.num_nodes_id,self.args.filters_1)
        self.convolution_2 = GCNConv(self.args.filters_1,self.args.filters_2)
        self.convolution_3 = GCNConv(self.args.filters_2,self.args.filters_3)

        self.attention = AttentionModule(self.args)


        self.tensor_network = TensorNetworkModule(self.args)

        self.fully_connected_first = nn.Linear(self.feature_count,self.args.bottle_neck_neurons)
        self.scoring_layer = nn.Linear(self.args.bottle_neck_neurons,1)

    def calculate_histogram(self,abstract_features_1, abstract_features_2):
        """
        理解calculate_histogram函数:
        作用:用于计算节点特征的直方图,用于衡量图之间的相似性。
        """
        # abstract_features_1:(num_nodes1, num_features=32)
        # abstract_features_2:(num_features=32, num_nodes2) 这里是完成转置了
        # 执行torch.mm 后得到 相似性得分矩阵。
        scores = torch.mm(abstract_features_1, abstract_features_2).detach()
        scores = scores.view(-1, 1)
        # 计算直方图,将得分分为 bins 个区间。
        # 例如 bins为 8,hist = tensor([4., 3., 1., 0., 0., 2., 1., 1.])
        hist = torch.histc(scores, bins=self.args.bins)  # 统计得分在每个区间的个数
        # hist = tensor([0.3333, 0.2500, 0.0833, 0.0000, 0.0000, 0.1667, 0.0833, 0.0833])
        hist = hist / torch.sum(hist)  # 归一化
        hist = hist.view(1, -1)

        return hist

    def convolutional_pass(self, edge_index, features):
        features = self.convolution_1(features, edge_index)
        features = F.relu(features)
        features = F.dropout(features, p=self.args.dropout, training=self.training)
        features = self.convolution_2(features, edge_index)
        features = F.relu(features)
        features = F.dropout(features, p=self.args.dropout, training=self.training)
        features = self.convolution_3(features, edge_index)
        return features

    def forward(self, data):
        # 获取图 1 的邻接矩阵
        edge_index_1 = data["edge_index_1"]
        # 获取图 2 的邻接矩阵
        edge_index_2 = data["edge_index_2"]
        # 获取图 1 的特征(独热编码)
        features_1 = data["features_1"]  # (num_nodes1, num_features=16)
        features_2 = data["features_2"]  # (num_nodes2, num_features=16)
        # (num_nodes1, num_features=16) ——> (num_nodes1, num_features=32)
        abstract_features_1 = self.convolutional_pass(edge_index_1,features_1)
        # (num_nodes2, num_features=16) ——> (num_nodes2, num_features=32)
        abstract_features_2 = self.convolutional_pass(edge_index_2,features_2)

        # 直方图
        if self.args.histogram == True:
            hist = self.calculate_histogram(abstract_features_1, torch.t(abstract_features_2))
        # 池化
        pooled_features_1 = self.attention(abstract_features_1)  # (num_nodes1, num_features=32) ——> (num_features=32)
        pooled_features_2 = self.attention(abstract_features_2)  # (num_nodes2, num_features=32) ——> (num_features=32)
        # NTN模型
        scores = self.tensor_network(pooled_features_1, pooled_features_2)
        scores = torch.t(scores)

        if self.args.histogram == True:
            scores = torch.cat((scores, hist), dim=1).view(1, -1)

        scores = F.relu(self.fully_connected_first(scores))
        score = torch.sigmoid(self.scoring_layer(scores))

        return score

整体代码:

import glob,json
import numpy as np
import torch,os,math,random
import torch.nn as nn
import torch.nn.functional as F
import argparse
from tqdm import tqdm, trange
from torch import optim
from torch_geometric.nn import GCNConv
from parameter import parameter_parser,IOStream,table_printer
# 这里读取完也是json格式的文件
train_graphs = glob.glob('data/train/'+'*.json')
test_graphs = glob.glob('data/test/'+'*.json')

def node_mapping():
    nodes_id = set()
    graph_pairs = train_graphs + test_graphs
    for graph_pair in graph_pairs:
        graph = json.load(open(graph_pair))
        nodes_id = nodes_id.union(set(graph['labels_1']))
        nodes_id = nodes_id.union(set(graph['labels_2']))
    nodes_id = sorted(nodes_id)
    nodes_id = {id:index for index,id in enumerate(nodes_id)}
    num_nodes_id = len(nodes_id)
    print(nodes_id,num_nodes_id)
    return nodes_id,num_nodes_id


"""
理解node_mapping()函数的作用:
例如:
graph1.json:{
    "labels_1": ["A", "B", "C"],
    "labels_2": ["D", "E"]
}   =>train_graph
graph2.json:{
    "labels_1": ["C", "F"],
    "labels_2": ["A", "G"]
}    => test_graph
执行:  graph_pairs = train_graphs + test_graphs 
得:=> graph_pairs = ['graph1.json','graph2.json']

执行: for graph_pair in graph_pairs:
第一个循环:graph = json.load(open('graph1.json'))
得: #graph = {"labels_1": ["A", "B", "C"], "labels_2": ["D", "E"]}

nodes_id = nodes_id.union(set(graph['labels_1']))  # {"A", "B", "C"}
nodes_id = nodes_id.union(set(graph['labels_2']))  # {"A", "B", "C", "D", "E"}

第二个循环:graph = json.load(open('graph2.json'))
得: #graph = {"labels_1": ["C", "F"], "labels_2": ["A", "G"]}
nodes_id = nodes_id.union(set(graph['labels_1']))  # {"A", "B", "C", "D", "E", "F"}
nodes_id = nodes_id.union(set(graph['labels_2']))  # {"A", "B", "C", "D", "E", "F", "G"}

执行:  nodes_id = sorted(nodes_id) 进行排序
得: # ["A", "B", "C", "D", "E", "F", "G"]

执行: nodes_id = {id:index for index,id in enumerate(nodes_id)}  进行索引的建立
得:# nodes_id = {"A": 0, "B": 1, "C": 2, "D": 3, "E": 4, "F": 5, "G": 6}
简简单单理解这段代码,作用也就是完成one-hot 编码的建立
"""
def load_dataset():
    train_dataset = []
    test_dataset = []
    nodes_id, num_nodes_id = node_mapping()

    for graph_pair in train_graphs:
        graph = json.load(open(graph_pair))
        data = process_data(graph,nodes_id)
        train_dataset.append(data)
    for graph_pair in test_graphs:
        graph = json.load(open(graph_pair))
        data = process_data(graph, nodes_id)
        test_dataset.append(data)
    return train_dataset,test_dataset,num_nodes_id


def process_data(graph,nodes_id):
    data = dict()

    # 获取每个图的邻接矩阵
    edges_1 = graph['graph_1'] + [[y,x] for x,y in graph['graph_1']]
    edges_2 = graph['graph_2'] + [[y,x] for x,y in graph['graph_2']]
    edges_1 = torch.from_numpy(np.array(edges_1,dtype=np.int64).T).type(torch.long)
    edges_2 = torch.from_numpy(np.array(edges_2,dtype=np.int64).T).type(torch.long)

    data['edge_index_1'] = edges_1
    data['edge_index_2'] = edges_2

    feature_1 ,feature_2 = [],[]
    for n in graph['labels_1']:
        feature_1.append([1.0 if nodes_id[n] == i else 0.0 for i in nodes_id.values()])
    for n in graph['labels_2']:
        feature_2.append([1.0 if nodes_id[n] == i else 0.0 for i in nodes_id.values()])

    feature_1 = torch.FloatTensor(np.array(feature_1))
    feature_2 = torch.FloatTensor(np.array(feature_2))

    data['features_1'] = feature_1
    data['features_2'] = feature_2

    norm_ged = graph['ged'] / (0.5 * (len(graph['labels_1']) +len(graph['labels_2'])))
    data['norm_ged'] = norm_ged

    data["target"] = torch.from_numpy(np.exp(-norm_ged).reshape(1, 1)).view(-1).float().unsqueeze(0)

    return data

"""
 理解process_data()函数的作用:
 数据假设:
 {
    "graph_1": [[0, 1], [1, 2]],  // 边的列表
    "graph_2": [[0, 2], [2, 3]],
    "labels_1": ["A", "B", "C"],  // 图1的节点标签
    "labels_2": ["A", "C", "D"],  // 图2的节点标签
    "ged": 2  // 图编辑距离
}
使用node_mapping()得到:nodes_id = {"A": 0, "B": 1, "C": 2, "D": 3, "E": 4, "F": 5, "G": 6}
执行:edges_1 = graph['graph_1'] + [[y, x] for x, y in graph['graph_1']] 
得: # [[0, 1], [1, 2], [1, 0], [2, 1]]  前部分是获取正向边,后边是添加反向边
执行:edges_2 = graph['graph_2'] + [[y, x] for x, y in graph['graph_2']] 
得: # [[0, 2], [2, 3], [2, 0], [3, 2]]

执行:edges_1 = torch.from_numpy(np.array(edges_1, dtype=np.int64).T).type(torch.long)
得:将其转换为tensor类型

第一个循环:
执行:for n in graph['labels_1']:  # ["A", "B", "C"]
执行:feature_1.append([1.0 if nodes_id[n] == i else 0.0 for i in nodes_id.values()])
得:
# feature_1 = [
      [ A ,  B ,  C ,  D , E  ,  F ,  G ]
#     [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],  # "A" 
#     [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0],  # "B" 
#     [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0]   # "C" 
第二个循环:
for n in graph['labels_2']:  # ["A", "C", "D"]
    feature_2.append([1.0 if nodes_id[n] == i else 0.0 for i in nodes_id.values()])
# feature_2 = [
#     [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],  # "A" 
#     [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0],  # "C" 
#     [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]   # "D" 
# ]

执行:feature_1 = torch.FloatTensor(np.array(feature_1))
得:将其转换为张量

    计算ged:
norm_ged = graph['ged'] / (0.5 * (len(graph['labels_1']) + len(graph['labels_2'])))
# norm_ged = 2 / (0.5 * (3 + 3)) = 2 / 3 = 0.6667

    计算目标值:
data['target'] = torch.from_numpy(np.exp(-norm_ged).reshape(1, 1)).view(-1).float().unsqueeze(0)
# target = torch.from_numpy(np.exp(-0.6667).reshape(1, 1)).view(-1).float().unsqueeze(0)
# target = torch.tensor([[0.5134]])

    理解一下ged:
Graph Edit Distance :图编辑距离
Ged 是衡量两个图之间的相似度的标识,ged越小,则越相似。
ged 是表示将一个图转变为另一个图的最小操作数(节点和边的添加、删除、替换等)。
norm_ged = GED / (0.5 * (V1 + V2 ))  其中V1和V2 是两个图的节点。

    理解一下target:
target = exp(-norm_ged),很多公式都会取负指数,因为这样能够将数值限定在0到1之间。
"""

# 定义注意力模块
class AttentionModule(nn.Module):
    def __init__(self,args):
        super(AttentionModule,self).__init__()
        self.args = args
        self.setup_weights()
        self.init_parameters()

    def setup_weights(self):
        # 创建权重矩阵(并未赋值),fiLters_3 = 32
        self.weight_matrix = nn.Parameter(torch.Tensor(self.args.filters_3, self.args.filters_3))
    def init_parameters(self):
        # 为权重矩阵进行赋值。
        nn.init.xavier_uniform_(self.weight_matrix)

    def forward(self, embedding):
        # embedding:(num_nodes=14, num_features=32)
        # 在每个特征维度上,取节点平均值
        # 执行torch.matmul(embedding, self.weight_matrix)=>[14,32]
        # 执行torch.mean(,dim=0) => [32,] 其实就是一行32列
        global_context = torch.mean(torch.matmul(embedding, self.weight_matrix), dim=0)
        # [32,] => [32,]
        transformed_global = torch.tanh(global_context)

        # sigmoid_scores计算每个节点与图之间的相似性得分(注意力)
        # sigmoid_scores:(14)
        # 执行:transormed_global.view(-1,1) [32,]=> [32,1]
        # 执行:torch.mm() =>矩阵乘法=>[14,32] × [32,1] = [14,1],
        # 注意:这里的实现并没有完全跟论文相同,缺少了一个转置,放在下一步实现了
        sigmoid_scores = torch.sigmoid(torch.mm(embedding, transformed_global.view(-1, 1)))

        # representation:图的嵌入(32)
        # 执行:torch.t(embedding) [14,32] =>[32,14]
        # 执行:torch.mm() [32,14] * [14,1] =>[32,1]
        representation = torch.mm(torch.t(embedding), sigmoid_scores)

        return representation
"""
理解attention函数:
根据simgnn论文可得知:

"""
class TensorNetworkModule(nn.Module):
    def __init__(self,args):
        super(TensorNetworkModule,self).__init__()
        self.args = args
        self.setup_weights()
        self.init_parameters()

    def setup_weights(self):
        # tensor_neurons 表示神经元数目
        # 三维张量 M
        self.weight_matrix = nn.Parameter(torch.Tensor(self.args.filters_3, self.args.filters_3, self.args.tensor_neurons))
        # 权重矩阵 V
        self.weight_matrix_block = nn.Parameter(torch.Tensor(self.args.tensor_neurons,2*self.args.filters_3))
        # 偏置向量 b
        self.bias = nn.Parameter(torch.Tensor(self.args.tensor_neurons,1))
    def init_parameters(self):
        nn.init.xavier_uniform_(self.weight_matrix)
        nn.init.xavier_uniform_(self.weight_matrix_block)
        nn.init.xavier_uniform_(self.bias)

    def forward(self,embedding_1,embedding_2):
        # 这一部分实现:h1^T * M * h2
        # embedding_1 = [32,1] 经转置=> [1,32]
        # M = [32,32,16]
        # scoring = [1,32] * [32,512] = [1,512]
        scoring = torch.mm(torch.t(embedding_1),self.weight_matrix.view(self.args.filters_3,-1))
        # scoring = [32,16]
        scoring = scoring.view(self.args.filters_3,self.args.tensor_neurons) # shape=[32,16]
        # scoring = [16,1]
        scoring = torch.mm(torch.t(scoring),embedding_2) # shape = [16,1]
        # 就是论文中将两个嵌入向量叠加起来
        combined_representation = torch.cat((embedding_1,embedding_2))
        # V*[]
        block_scoring = torch.mm(self.weight_matrix_block,combined_representation)

        scores = F.relu(scoring + block_scoring +self.bias)

        return scores

"""
理解这一部分张量网络:
根据SimGNN论文中的公式:
假设embedding_1 和 embedding_2 都为 [32,1],self.args.filters_3=32,self.args.tensor_neurons=16
可得: self.weight_matrix = [32,32,16]
      self.weight_matrix_block = [16,64]
      self.bias = [16,1]
问题一:M 为啥是三维的权重矩阵呢?
例子中的M是[32,32,16] 表示k = 16个32*32的矩阵
"""
class SimGNN(nn.Module):
    def __init__(self,args,num_nodes_id):
        super(SimGNN,self).__init__()
        self.args = args

        self.num_nodes_id = num_nodes_id
        self.setup_layers()

    # 是否使用直方图
    def calculate_bottleneck_features(self):
        if self.args.histogram == True:
            self.feature_count = self.args.tensor_neurons + self.args.bins
        else:
            self.feature_count = self.args.tensor_neurons
    def setup_layers(self):
        self.calculate_bottleneck_features()
        self.convolution_1 = GCNConv(self.num_nodes_id,self.args.filters_1)
        self.convolution_2 = GCNConv(self.args.filters_1,self.args.filters_2)
        self.convolution_3 = GCNConv(self.args.filters_2,self.args.filters_3)

        self.attention = AttentionModule(self.args)


        self.tensor_network = TensorNetworkModule(self.args)

        self.fully_connected_first = nn.Linear(self.feature_count,self.args.bottle_neck_neurons)
        self.scoring_layer = nn.Linear(self.args.bottle_neck_neurons,1)

    def calculate_histogram(self,abstract_features_1, abstract_features_2):
        """
        理解calculate_histogram函数:
        作用:用于计算节点特征的直方图,用于衡量图之间的相似性。
        """
        # abstract_features_1:(num_nodes1, num_features=32)
        # abstract_features_2:(num_features=32, num_nodes2) 这里是完成转置了
        # 执行torch.mm 后得到 相似性得分矩阵。
        scores = torch.mm(abstract_features_1, abstract_features_2).detach()
        scores = scores.view(-1, 1)
        # 计算直方图,将得分分为 bins 个区间。
        # 例如 bins为 8,hist = tensor([4., 3., 1., 0., 0., 2., 1., 1.])
        hist = torch.histc(scores, bins=self.args.bins)  # 统计得分在每个区间的个数
        # hist = tensor([0.3333, 0.2500, 0.0833, 0.0000, 0.0000, 0.1667, 0.0833, 0.0833])
        hist = hist / torch.sum(hist)  # 归一化
        hist = hist.view(1, -1)

        return hist

    def convolutional_pass(self, edge_index, features):
        features = self.convolution_1(features, edge_index)
        features = F.relu(features)
        features = F.dropout(features, p=self.args.dropout, training=self.training)
        features = self.convolution_2(features, edge_index)
        features = F.relu(features)
        features = F.dropout(features, p=self.args.dropout, training=self.training)
        features = self.convolution_3(features, edge_index)
        return features

    def forward(self, data):
        # 获取图 1 的邻接矩阵
        edge_index_1 = data["edge_index_1"]
        # 获取图 2 的邻接矩阵
        edge_index_2 = data["edge_index_2"]
        # 获取图 1 的特征(独热编码)
        features_1 = data["features_1"]  # (num_nodes1, num_features=16)
        features_2 = data["features_2"]  # (num_nodes2, num_features=16)
        # (num_nodes1, num_features=16) ——> (num_nodes1, num_features=32)
        abstract_features_1 = self.convolutional_pass(edge_index_1,features_1)
        # (num_nodes2, num_features=16) ——> (num_nodes2, num_features=32)
        abstract_features_2 = self.convolutional_pass(edge_index_2,features_2)

        # 直方图
        if self.args.histogram == True:
            hist = self.calculate_histogram(abstract_features_1, torch.t(abstract_features_2))
        # 池化
        pooled_features_1 = self.attention(abstract_features_1)  # (num_nodes1, num_features=32) ——> (num_features=32)
        pooled_features_2 = self.attention(abstract_features_2)  # (num_nodes2, num_features=32) ——> (num_features=32)
        # NTN模型
        scores = self.tensor_network(pooled_features_1, pooled_features_2)
        scores = torch.t(scores)

        if self.args.histogram == True:
            scores = torch.cat((scores, hist), dim=1).view(1, -1)

        scores = F.relu(self.fully_connected_first(scores))
        score = torch.sigmoid(self.scoring_layer(scores))

        return score
def exp_init():
    """实验初始化"""
    if not os.path.exists('outputs'):
        os.mkdir('outputs')
    if not os.path.exists('outputs/' + args.exp_name):
        os.mkdir('outputs/' + args.exp_name)

    # 跟踪执行脚本,windows下使用copy命令,且使用双引号
    os.system(f"copy main.py outputs\\{args.exp_name}\\main.py.backup")
    os.system(f"copy data.py outputs\\{args.exp_name}\\data.py.backup")
    os.system(f"copy model.py outputs\\{args.exp_name}\\model.py.backup")
    os.system(f"copy parameter.py outputs\\{args.exp_name}\\parameter.py.backup")

def train(args, IO, train_dataset, num_nodes_id):
    # 使用GPU or CPU
    device = torch.device('cpu' if args.gpu_index < 0 else 'cuda:{}'.format(args.gpu_index))
    if args.gpu_index < 0:
        IO.cprint('Using CPU')
    else:
        IO.cprint('Using GPU: {}'.format(args.gpu_index))
        torch.cuda.manual_seed(args.seed)  # 设置PyTorch GPU随机种子

    # 加载模型及参数量统计
    model = SimGNN(args, num_nodes_id).to(device)
    IO.cprint(str(model))
    total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    IO.cprint('Model Parameter: {}'.format(total_params))

    # 优化器
    optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
    IO.cprint('Using Adam')

    epochs = trange(args.epochs, leave=True, desc="Epoch")

    for epoch in epochs:

        random.shuffle(train_dataset)
        train_batches = []
        for graph in range(0, len(train_dataset), 16):
            train_batches.append(train_dataset[graph:graph + 16])

        loss_epoch = 0 # 一个epoch,所有样本损失

        for index, batch in tqdm(enumerate(train_batches), total=len(train_batches), desc="Train_Batches"):
            optimizer.zero_grad()

            loss_batch = 0 # 一个batch,样本损失

            for data in batch:
                # 数据变成GPU支持的数据类型
                data["edge_index_1"], data["edge_index_2"] = data["edge_index_1"].to(device), data["edge_index_2"].to(device)
                data["features_1"], data["features_2"] = data["features_1"].to(device), data["features_2"].to(device)

                prediction = model(data)
                loss_batch = loss_batch + F.mse_loss(data["target"], prediction.cpu())

            loss_epoch = loss_epoch + loss_batch.item()

            loss_batch.backward()
            optimizer.step()

        IO.cprint('Epoch #{}, Train_Loss: {:.6f}'.format(epoch, loss_epoch/len(train_dataset)))

    torch.save(model, 'outputs/%s/model.pth' % args.exp_name)
    IO.cprint('The current best model is saved in: {}'.format('******** outputs/%s/model.pth *********' % args.exp_name))


def test(args, IO, test_dataset):
    """测试模型"""
    device = torch.device('cpu' if args.gpu_index < 0 else 'cuda:{}'.format(args.gpu_index))

    # 输出内容保存在之前的训练日志里
    IO.cprint('********** TEST START **********')
    IO.cprint('Reload Best Model')
    IO.cprint('The current best model is saved in: {}'.format('******** outputs/%s/model.pth *********' % args.exp_name))

    model = torch.load('outputs/%s/model.pth' % args.exp_name).to(device)
    #model = model.eval()  # 创建一个新的评估模式的模型对象,不覆盖原模型

    ground_truth = [] # 存放data["norm_ged"]
    scores = [] # 存放模型预测与ground_truth的损失

    for data in test_dataset:
        data["edge_index_1"], data["edge_index_2"] = data["edge_index_1"].to(device), data["edge_index_2"].to(device)
        data["features_1"], data["features_2"] = data["features_1"].to(device), data["features_2"].to(device)

        prediction = model(data)

        scores.append((-math.log(prediction.item()) - data["norm_ged"]) ** 2) # MSELoss
        ground_truth.append(data["norm_ged"])

    model_error = np.mean(scores)

    norm_ged_mean = np.mean(ground_truth)
    baseline_error = np.mean([(gt - norm_ged_mean) ** 2 for gt in ground_truth])
    IO.cprint('Baseline_Error: {:.6f}, Model_Test_Error: {:.6f}'.format(baseline_error, model_error))



args = parameter_parser()
random.seed(args.seed)  # 设置Python随机种子
torch.manual_seed(args.seed)  # 设置PyTorch随机种子
exp_init()

IO = IOStream('outputs/' + args.exp_name + '/run.log')
IO.cprint(str(table_printer(args)))  # 参数可视化

train_dataset, test_dataset, num_nodes_id = load_dataset()

train(args, IO, train_dataset, num_nodes_id)
test(args, IO, test_dataset)

感谢B站的各位老师,不过训练部分的代码还没看,明天吧!

人工智能(AI)最近经历了复兴,在视觉,语言,控制和决策等关键领域取得了重大进展。 部分原因在于廉价数据和廉价计算资源,这些资源符合深度学习的自然优势。 然而,在不同的压力下发展的人类智能的许多定义特征仍然是当前方法无法实现的。 特别是,超越一个人的经验 - 从婴儿期开始人类智能的标志 - 仍然是现代人工智能的一项艰巨挑战。 以下是部分立场文件,部分审查和部分统一。我们认为组合概括必须是AI实现类似人类能力的首要任务,结构化表示和计算是实现这一目标的关键。就像生物学利用自然和培养合作一样,我们拒绝“手工工程”和“端到端”学习之间的错误选择,而是倡导一种从其互补优势中获益的方法。我们探索如何在深度学习架构中使用关系归纳偏差来促进对实体,关系和组成它们的规则的学习。我们为AI工具包提供了一个新的构建模块,具有强大的关系归纳偏差 - 形网络 - 它概括和扩展了在形上运行的神经网络的各种方法,并为操纵结构化知识和生成结构化行为提供了直接的界面。我们讨论网络如何支持关系推理和组合泛化,为更复杂,可解释和灵活的推理模式奠定基础。作为本文的配套文件,我们还发布了一个用于构建形网络的开源软件库,并演示了如何在实践中使用它们。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值