【完全信息静态博弈-Nash均衡的特性】

博弈的解

给定一个博弈,关于博弈问题的解,目前至少有三种不同的可能解释:

  1. 经验的、描述性的解释:在给定博弈中,参与人如何展开博弈;
  2. 规范性的解释:在给定的博弈中,参与人“应该”如何展开博弈;
  3. 理论的解释:假定参与人的行为是“合理的”或“理性的”,那么能够推测出什么。

第一种解释基于对参与人行为的观察;第二种解释基于商定的原则,适合研究合作博弈;第三种解释就是非合作博弈。

Nash均衡的意义

Nash均衡的特点:对任一参与人 i i i,在给定其他参与人选择的情况下,均衡战略是自己的最优战略。是所有人的自我肯定。

给定一个博弈 G G G R R R是参与人混合战略组合的集合, φ ( G ) ∈ R \varphi(G)\in R φ(G)R表示博弈的解,其满足两个条件:

  1. ∀ G , π ∈ φ ( G ) \forall G,\pi\in\varphi(G) G,πφ(G),都存在一个环境能使 π \pi π成为参与人在这个博弈 G G G中将如何行动的准确预测。(解集里面的都行,不代表外面不行)
  2. ∀ G , π ∈ R \ φ ( G ) \forall G,\pi\in R \backslash \varphi(G) G,πR\φ(G),都不存在一个环境能使 π \pi π成为参与人在这个博弈 G G G中将如何行动的准确预测。(解集外面的都不行,不代表里面行)

满足第一条性质的解称为博弈的下解,满足第二条性质的解称为博弈的上解,显然Nash均衡是上解。

Nash均衡的存在性

定理3.1(Nash均衡的存在性定理1) 每一个有限的战略式博弈至少存在一个Nash均衡(包括纯战略和混合战略的Nash均衡)。

定理3.2(Nash均衡的存在性定理2) 对于战略式博弈,若 S i S_i Si为欧氏空间的非空紧凸子集,支付函数 u i u_i ui关于战略组合 s s s连续、关于 s i s_i si拟凹,则该博弈存在纯战略的Nash均衡。

定理3.3(Nash均衡的存在性定理3) 对于战略式博弈,若 S i S_i Si为距离空间的非空紧子集,支付函数 u i u_i ui关于战略组合 s s s连续,则该博弈存在混合战略Nash均衡。

定理3.4(Nash均衡的存在性定理4) 对于战略式博弈,若 S i S_i Si为有限维欧氏空间的非空紧凸子集,支付函数 u i u_i ui关于 s s s上半连续、关于 s i s_i si拟凹且 max ⁡ s i u i ( s i , s − i ) \max_{s_i}u_i(s_i,s_{-i}) maxsiui(si,si)关于 s − i s_{-i} si连续,则该博弈存在一个纯战略的Nash均衡。

Nash均衡的多重性

传统的博弈论研究中,面临的问题或许不是如何找到博弈的Nash均衡(存在性问题),而是在博弈的多个Nash均衡中选择一个合理的均衡(多重性问题)。

焦点效应

现象:在一个具有多重均衡的博弈中,趋向于将参与人的注意力都集中到一个均衡的任何事情,都可以使参与人全都预期并随之实行这个均衡。该现象称之为“焦点效应”

在焦点效应中具有某种使它显著地区别于所有其他均衡之性质的均衡,被称为“焦点均衡”。

造成焦点均衡的因素有:

  1. 社会文化习俗、习惯、博弈的历史…;
  2. 均衡战略自身的性质(几个均衡中,效用最大的均衡往往会称为最后的答案);
  3. 廉价磋商。

廉价磋商指的是:参与人在博弈开始之前,不花任何成本所达成的所达成的、对参与人没有约束力的协商。

焦点效应不可能引导理性的参与人去执行一个非Nash均衡的战略组合。

cheap talk不是任何情况下都有效的。

相关均衡

让参与人根据某个共同观测到的信号来选择行动。

如果参与人根据信号选择行动的规则本身能够构成一个Nash均衡,那么参与人就可能会根据某个共同观测到的信号来选择行动。

这种有参与人的行动规则所构成的Nash均衡就是“相关均衡

定义3.1 一个给定的有限 n n n人战略式博弈的相关均衡,包括:

  1. 有限概率空间 ( Ω , π ) (\Omega,\pi) (Ω,π)
  2. ∀ i ∈ Γ \forall i\in\Gamma iΓ,状态集 Ω \Omega Ω的一个分割 P i P_i Pi
  3. δ = ( δ 1 ∗ , . . . , δ n ∗ ) \delta=(\delta_1^*,...,\delta_n^*) δ=(δ1,...,δn)为相关均衡当且仅当对 ∀ i ∈ Γ \forall i\in\Gamma iΓ和任意的 δ i \delta_i δi,有 ∑ ω ∈ Ω π ( ω ) ⋅ u i ( δ i ∗ , δ − 1 ∗ ) ≥ π ( ω ) ⋅ u i ( δ i , δ − 1 ∗ ) \sum_{\omega\in\Omega}\pi(\omega)\cdot u_i(\delta_i^*,\delta_{-1}^*)\ge\pi(\omega)\cdot u_i(\delta_i,\delta_{-1}^*) ωΩπ(ω)ui(δi,δ1)π(ω)ui(δi,δ1)
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

右边是我女神

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值