(WRF-UCM)高精度城市化气象动力模拟

气候变化及应对是政府、科学界及商业界关注的焦点。气候是多个领域(生态、水资源、风资源及碳中和等问题)的主要驱动因素,合理认知气候变化有利于解释生态环境变化机理及过程,而了解现在、未来气候变化则是进行生态、环境及能源评估、碳政策规划的先决条件,而气候模拟是获取高精度气候信息的最主要手段,现代生态、水文、新能源及碳中和领域需要亚公里及更高分辨率的气象模拟,WRF模式是国内外应用最为广泛的气象模式,使用该模式进行高精度甚至几百米的模拟应用也越来越多。该模式城市冠层模型(WRF-UCM)可以实现对城市中小尺度气象过程的精细动力模拟,其应用范围及实际业务及科研应用也越来越广泛。但该模式运行于Linux平台,前处理、运行及分析过程复杂、难度大

模型基础理论

WRF-UCM模型介绍

WRF-UCM使用什么样的计算平台?计算系统?

 模型平台从零安装讲解

如何安装WRF-UCM模式所需要的平台?(windows平台+Vmware16

如何从零开始搭建WRF-UCM编译所需的系统?(RockyLinux9

 

安装WRF-UCM从代码转为程序所需的编译器(OneApi) 

 WRF-UCM模式输入输出文件格式讲解(NetCDF)

城市模块离线模拟案例讲解

  • 驱动数据GLDAS资料获取技术

 

  • 驱动资料ERA5资料获取技术

 

  • NoahMP-hrldas前处理案例

 

  • NoahMP-UCM离线模拟案例

 

城市模块在线耦合(WRF+WRF-UCM)模拟案例讲解

WRF+WRF-UCM前处理技术讲解

WRF+WRF-UCM模拟区域设置技术

WRF+WRF-UCM高程、土地利用、植被等地理数据及温压湿风等气象资料处理技术讲解

WRF+WRF-UCM如何模拟气象场

WRF+WRF-UCM非耦合模拟案例

 

WRF+WRF-UCM耦合模拟案例讲解

 

 实际应用及案例分析

WRF-UCM模拟结果如何分析?(NCL)

 

    1. 示例1(线图)

 

    1. 示例(填色图)

    1. 示例(图层叠加)
      1. 示例(图层排列)

      ■高精度气象模拟软件WRF(Weather Research Forecasting)实践

    2. ■CMIP6数据处理方法与典型案例分析

    3. ■Python人工智能在气象中的实践技术

    4. ■WRF DA资料同化系统理论、运行与与变分、混合同化新方法

    5. ■Python语言在地球科学领域中的实践技术

    6. ■Noah-MP陆面过程模型建模方法与站点、区域模拟

    7. ■Python在WRF模型自动化运行及前后处理中的实践技术

    8. ■系统学习CMAQ空气质量模式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值