TransUnet: 结构解析

github来源

原文论文

最近在学习TransUnet的算法,希望能应用到降雨预测中

论文中本人认为没有对此结构进行非常清晰的解释,尤其是CNN代码块部分。而源码因本人刚开始接触深度学习内容阅读起来也较为困难。因此打算分成两个部分进行学习,首先是TransUnet的结构部分,重点为数据的输入输出。其次是源代码中自己使用数据的替换。暂时不对结构的深层次原理做过多研究。

首先非常感谢这位博主提供的TransUnet具体实现图,为本人理解此网络结构帮助巨大

https://b

### TransUNet 数据集下载与使用教程 #### 获取 Seg-CQ500 数据集 为了训练和评估 TransUNet,在医疗图像分割领域选择了 Seg-CQ500 数据集[^1]。该数据集专注于头部CT扫描,适用于研究创伤性脑损伤(TBI)等问题。 访问原始 CQ500 数据集可以通过其官方发布渠道获取。通常这类公开医学影像数据库会要求注册账号并通过审核才能获得下载权限。具体操作流程如下: - 访问 [CQ500 官方网站](http://headctstudy.qure.ai/dataset/) - 注册账户并等待管理员批准 - 登录后按照指引完成数据集申请过程 对于已经处理好的 Seg-CQ500 版本,则可能存在于某些科研机构内部服务器或是由论文作者提供链接分享给同行学者们用于重复实验验证目的。 #### 使用 DA-TransUNet 教程概述 针对如何应用改进版的 TransUNet——即 DA-TransUNet 来执行具体的医学图像分割任务,有详细的指南可供参考[^2]。此文档不仅涵盖了环境配置、模型搭建等基础准备工作,还深入讲解了参数调整技巧以及常见问题解决方案等内容。 以下是基于 PyTorch 实现的一个简单例子来加载预训练权重文件并对单张图片做预测: ```python import torch from da_transunet import Da_TransUnet # 假设这是自定义库中的类名 device = 'cuda' if torch.cuda.is_available() else 'cpu' model_path = './pretrained_weights/best_model.pth' # 初始化网络结构并将模型移动到GPU/CPU设备上运行 net = Da_TransUnet().to(device) # 加载之前保存的最佳模型状态字典 checkpoint = torch.load(model_path, map_location=device) net.load_state_dict(checkpoint['state_dict']) def predict(image_tensor): net.eval() with torch.no_grad(): input_data = image_tensor.unsqueeze(0).to(device) output = net(input_data) pred_mask = torch.argmax(output.squeeze(), dim=0).detach().cpu().numpy() return pred_mask ``` 这段代码展示了怎样构建一个可以用来推理的新实例,并且包含了读取外部存储器里的最优权值表从而恢复先前学习成果的方法;同时也给出了调用 `predict` 函数来进行实际推断的具体方式。
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值