机器学习笔记(第八周)#1 —— 聚类(Clustering)



一、无监督学习:简介

之前介绍到都是监督学习,即对于数据集中每一个样本都有对应的标签,包括回归(Regression)和分类(Classification);接下来将开始介绍无监督学习算法,即数据集中没有任何的标签,包括聚类(Clustering),即无监督学习中没有任何的标签或者是有相同的标签或者就是没标签,如下图所示。
无监督学习
在这些样本中存在一系列点,但没有标签,训练集 可以写成 x ( 1 ) x^{(1)} x(1), x ( 2 ) x^{(2)} x(2), x ( 3 ) x^{(3)} x(3)…… x ( m ) x^{(m)} x(m),没有任何标签 y y y。在非监督学习中,我们需要将一系列无标签的训练数据,输入到一个算法中,然后我们告诉这个算 法,快去为我们找找这个数据的内在结构给定数据。我们可能需要某种算法帮助我们寻找一 种结构。图上的数据看起来可以分成两个分开的点集(称为簇),一个能够找到我圈出的这些点集的算法,就被称为聚类算法。聚类算法的应用:市场分割‘社交网络分析等等。

二、K-均值算法(K-Means Algorithm)

K-均值是最普及的聚类算法,算法接受一个未标记的数据集,然后将数据聚类成不同的组。
K-均值是一个迭代算法,假设我们想要将数据聚类成 n 个组,其方法为:
(1)首先选择𝐾个随机的点,称为聚类中心(cluster centroids);
(2)对于数据集中的每一个数据,按照距离𝐾个中心点的距离,将其与距离最近的中心点关联起来,与同一个中心点关联的所有点聚成一类。
(3)计算每一个组的平均值,将该组所关联的中心点移动到平均值的位置。
(4)重复步骤(2)-(3)直至中心点不再发生变化,如下图所示。
K-Means
K-Means
在K-均值算法中,用 μ 1 , μ 2 , ⋅ ⋅ ⋅ , μ k \mu^{1},\mu^{2},\cdot \cdot \cdot ,\mu^{k} μ1,μ2,,μk表示聚类中心,用 c ( 1 ) , c ( 2 ) , ⋅ ⋅ ⋅ , c ( m ) c^{(1)},c^{(2)},\cdot \cdot \cdot ,c^{(m)} c(1),c(2),,c(m)表示存储与第𝑖个实例数据最近的聚类中心的索引,伪代码如下:

Repeat { 
for i = 1 to m 
c(i) := index (form 1 to K) of cluster centroid closest to x(i) 
for k = 1 to K 
μk := average (mean) of points assigned to cluster k
}

算法分为两个步骤,第一个 for 循环是赋值步骤,即:对于每一个样例 i i i,计算其应该属于的类。第二个 for 循环是聚类中心的移动,即:对于每一个类 K K K,重新计算该类的质心。
K-均值算法也可以很便利地用于将数据分为许多不同组,即使在没有非常明显区分的组 群的情况下也可以。下图所示的数据集包含身高和体重两项特征构成的,利用 K-均值算法将数据分为三类,用于帮助确定将要生产的 T-恤衫的三种尺寸。
K-Means

三、优化目标

K-均值最小化问题,是要最小化所有的数据点与其所关联的聚类中心点之间的距离之和,因此 K-均值的代价函数(又称畸变函数 Distortion function)为:
J ( c ( 1 ) , c ( 2 ) , ⋅ ⋅ ⋅ , c ( m ) , μ 1 , μ 2 , ⋅ ⋅ ⋅ , μ k ) = 1 m ∑ i = 1 m ∥ X ( i ) − μ c ( i ) ∥ 2 J(c^{(1)},c^{(2)},\cdot \cdot \cdot ,c^{(m)},\mu^{1},\mu^{2},\cdot \cdot \cdot ,\mu^{k})=\frac{1}{m}\sum_{i=1}^{m}\begin{Vmatrix}X^{(i)}-\mu_{c}(i)\\\end{Vmatrix}^{2} J(c(1),c(2),,c(m),μ1,μ2,,μk)=m1i=1mX(i)μc(i)2
其中 μ c ( i ) \mu_{c^{(i)}} μc(i)代表与 x ( i ) x^{(i)} x(i)最近的聚类中心点。 优化目标便是找出使得代价函数最小的 c ( 1 ) , c ( 2 ) , ⋅ ⋅ ⋅ , c ( m ) c^{(1)},c^{(2)},\cdot \cdot \cdot ,c^{(m)} c(1),c(2),,c(m) μ 1 , μ 2 , ⋅ ⋅ ⋅ , μ k \mu^{1},\mu^{2},\cdot \cdot \cdot ,\mu^{k} μ1,μ2,,μk:
m i n c ( 1 ) , c ( 2 ) , ⋅ ⋅ ⋅ , c ( m ) , μ 1 , μ 2 , ⋅ ⋅ ⋅ , μ k J ( c ( 1 ) , c ( 2 ) , ⋅ ⋅ ⋅ , c ( m ) , μ 1 , μ 2 , ⋅ ⋅ ⋅ , μ k ) \underset{c^{(1)},c^{(2)},\cdot \cdot \cdot ,c^{(m)},\mu^{1},\mu^{2},\cdot \cdot \cdot ,\mu^{k}}{min}J(c^{(1)},c^{(2)},\cdot \cdot \cdot ,c^{(m)},\mu^{1},\mu^{2},\cdot \cdot \cdot ,\mu^{k}) c(1),c(2),,c(m),μ1,μ2,,μkminJ(c(1),c(2),,c(m),μ1,μ2,,μk)
回顾刚才给出的: K-均值迭代算法,第一个循环是用于减小 c ( i ) c^{(i)} c(i)引起的代价, 而第二个循环则是用于减小 μ i \mu^{i} μi引起的代价。迭代的过程一定会是每一次迭代都在减小代价函数,不然便是出现了错误。

四、随机初始化

在运行 K-均值算法的之前,首先要随机初始化所有的聚类中心点:
1.我们应该选择 K < m K<m K<m,即聚类中心点的个数要小于所有训练集实例的数量;
2.随机选择 K K K个训练实例,然后令 K K K个聚类中心分别与这 K K K个训练实例相等K-均值的一个问题在于,它有可能会停留在一个局部最小值处,而这取决于初始化的情况。
为了解决这个问题,通常需要多次运行K-均值算法,每一次都重新进行随机初始。最后再比较多次运行 K-均值的结果,选择代价函数最小的结果。这种方法在 K K K较小的时候(2-10)还是可行的,但是如果 K K K较大,这么做也可能不会有明显地改善。

五、选择聚类数

没有所谓最好的选择聚类数的方法,通常是需要根据不同的问题,人工进行选择的。选择的时候思考我们运用 K-均值算法聚类的动机是什么,然后选择能最好服务于该目的标聚类数。
当人们在讨论,选择聚类数目的方法时,有一个可能会谈及的方法叫作“肘部法则”。所需要做的是改变 K K K值,也就是聚类类别数目的总数。我们用一个聚类来运行 K-均值聚类方法。这就意味着,所有的数据都会分到一个聚类里,然后计算成本函数或者计算畸变函数 J J J K K K代表聚类数字。
肘部法则
如图所示畸变值迅速下降,从 1 到 2 ,从 2 到 3 之后,在 3 的时候达到一个肘点。在此之后,畸变值就下降的非常慢,看起来就像使用 3 个聚类来进行聚类是正确的,这是因为那个点是曲线的肘点,畸变值下降得很快, K = 3 K=3 K=3之后就下降得很慢,那么我们就选 K = 3 K=3 K=3

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值