机器学习—决策树

本文详细介绍了决策树的构建过程,包括特征选择(基于信息熵和信息增益)、分裂条件(如节点纯度、深度限制等)、独热编码方法,以及回归树、随机森林和XGBoost等变种的原理。特别强调了决策树在处理结构化数据的优势和适用场景,与神经网络的对比。
摘要由CSDN通过智能技术生成

决策树的构建

·选择哪个特征进行分类(目标最大纯度/最小杂质)
·选择什么时候停止分裂:
1.一个节点100%都是一类
2.超过最大深度
3.纯度提升过小(小于一定阈值)
4.一个节点上的样本太少(小于一定阈值)

信息熵

熵:描述事件的不确定性;衡量一组数据杂质的度量
p 0 = 1 − p 1 p_0 = 1-p_1 p0=1p1
H ( p 1 ) = − p 1 l o g 2 ( p 1 ) − p 0 l o g 2 ( p 0 ) H(p_1)=-p_1log_2(p_1)-p_0log_2(p_0) H(p1)=p1log2(p1)p0log2(p0)
H ( p 1 ) = − p 1 l o g 2 ( p 1 ) − ( 1 − p 1 ) l o g 2 ( 1 − p 1 ) H(p_1)=-p_1log_2(p_1)-(1-p_1)log_2(1-p_1) H(p1)=p1log2(p1)(1p1)log2(1p1)
在这里插入图片描述

分裂前信息熵:H(0.5)(10只动物,5只猫,p=0.5)
分裂后左分支:H(0.8)(7只动物,4只猫,p=0.57)
分裂后右分支:H(0.2)(3只动物,1只猫,p=0.33)
分裂后总信息熵: 7 10 H ( 0.8 ) + 3 10 H ( 0.2 ) \frac{7}{10}H(0.8)+\frac{3}{10}H(0.2) 107H(0.8)+103H(0.2)
信息增益: H ( 0.5 ) − ( 7 10 H ( 0.8 ) + 3 10 H ( 0.2 ) ) H(0.5)-(\frac{7}{10}H(0.8)+\frac{3}{10}H(0.2)) H(0.5)(107H(0.8)+103H(0.2))
在决策树分裂过程中,尝试不同的阈值进行分割,选择信息增益最大的阈值作为决策树的分割点。

独热编码

将离散特征转化为连续特征
如下,10011,00101,00110等,为独热编码
在这里插入图片描述

回归树

通过树的分类进行回归,目标是同一叶子节点内方差最小
在这里插入图片描述
分裂前总方差:20.51
分裂后左分支方差:1.47
分裂后右分支:21.87
信息增益: 20.51 − ( 5 10 ⋅ 1.47 + 5 10 ⋅ 21.87 ) 20.51-(\frac{5}{10}·1.47+\frac{5}{10}·21.87) 20.51(1051.47+10521.87)

随机森林

将总体样本进行放回抽样,制造不同的训练集(训练集内部也可重复)
利用不同训练集训练出不同的决策树,同一样本在不同的树下可能是不同的结果
进行预测时,根据所有树(森林)的分类结果进行投票,输出分类结果

XGBOOST

根据上一颗树的结果的残差拟合下一颗树

决策树的选择使用

适合处理结构性数据,不适合音频图像文本
训练速度很快
小规模的决策树是人可以进行解释的

神经网络的选择使用

适合各类数据处理
训练速度可能很慢
可以用迁移学习一起工作
容易和其他神经网络串联到一起构建一个系统的机器学习系统

  • 25
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值