在anaconda上创建tensorflow环境,安装tensorflow、gdal、keras以及sklearn

一、Anaconda的下载与安装,在清华镜像网站或者官网上下载Anaconda安装包:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
下载好合适的安装包之后直接按着提示安装,在这一步时选中第一项路径:
在这里插入图片描述
成功安装后进行第二步。
二、在开始界面打开anaconda prompt,然后出现一个命令框
在这里插入图片描述
①创建一个tensorflow环境,以python3.6为基础。
在这里插入图片描述

conda create -n tensorflow python=3.6

②用清华镜像网站安装接下来的内容

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes

③激活刚刚创建的tensorflow环境,如果出现图上改变,那么说明创建成功:

activate tensorflow

如果想退出该环境,输入下边代码:

conda deactivate

如果想查看已经创建出来的环境有哪些:

conda info --envs

在这里插入图片描述
结果显示我们已经创建好的tensorflow环境。
④用pip安装tensorflow2.0.0(版本按照自己需要安装,但是如果接下来要安装keras,要让tensorflow与keras的版本对应,对应关系放在下图)

pip --default-timeout=100 install --upgrade --ignore-installed tensorflow==2.0.0

查看pythonx.x支持的tensorflow版本:

conda info tensorflow

在这里插入图片描述
如果想看tensorflow是否安装成功:

>>python
>>import tensorflow as tf
>>

这种情况就是安装成功了。
取消python环境:

exit()

⑤安装gdal:gdal属于第三方库,不能直接用pip安装,所以在https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal这个网址下载所需版本的gdal,然后输入

(tensorflow) C:\Users\lenovo>pip install GDAL-3.0.4-cp36-cp36m-win_amd64.whl

要把下载的gdal安装包放在上面代码所在的路径里
检查是否成功:

>>python
>>import gdal
>>

⑥接下来安装 mingw libpython、theano(这个是我自己需要的,也可以不安装)

(tensorflow) C:\Users\lenovo>conda install mingw libpython
(tensorflow) C:\Users\lenovo>pip install theano

⑦最后安装keras2.3.0(注意版本),以及matplotlib、sklearn,搭建深度学习的平台

(tensorflow) C:\Users\lenovo>pip install keras
(tensorflow) C:\Users\lenovo>pip install matplotlib
(tensorflow) C:\Users\lenovo>pip install sklearn

这样就安装完成啦!

### Linux 安装 Anaconda创建支持 TensorFlow 2 的环境 在 Linux 系统中安装 Anaconda创建支持 TensorFlow 2 的环境,可以按照以下方法进行操作: #### 1. 下载并安装 Anaconda 首先需要下载 Anaconda安装包。可以通过以下命令从 Anaconda 官方网站下载最新版本的安装脚本: ```bash wget https://repo.anaconda.com/archive/Anaconda3-2023.07-1-Linux-x86_64.sh ``` 然后赋予该脚本执行权限并运行安装程序: ```bash chmod +x Anaconda3-2023.07-1-Linux-x86_64.sh ./Anaconda3-2023.07-1-Linux-x86_64.sh ``` 在安装过程中,会提示用户阅读许可协议并选择安装路径。完成安装后,重启终端以使更改生效[^3]。 #### 2. 验证 Anaconda 安装 通过以下命令验证 Anaconda 是否成功安装: ```bash conda --version ``` 如果显示版本号,则说明安装成功。 #### 3. 创建虚拟环境 使用 `conda create` 命令创建一个新的虚拟环境,并指定 Python 版本(TensorFlow 2 推荐使用 Python 3.8 或更高版本): ```bash conda create --name tf2_env python=3.9 ``` 其中 `tf2_env` 是环境名称,可以根据需要自行命名。 激活刚刚创建的虚拟环境: ```bash conda activate tf2_env ``` #### 4. 安装 TensorFlow 2 在激活的虚拟环境中,使用以下命令安装 TensorFlow 2: ```bash conda install tensorflow ``` 如果需要安装特定版本的 TensorFlow 2,例如 TensorFlow 2.10.0,可以指定版本号: ```bash conda install tensorflow==2.10.0 ``` 为了加速下载过程,可以配置清华大学的 Anaconda 镜像源: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --set show_channel_urls yes ``` #### 5. 验证 TensorFlow 安装 安装完成后,可以通过以下 Python 脚本验证 TensorFlow 是否正常工作: ```python import tensorflow as tf print("TensorFlow version:", tf.__version__) print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) ``` 如果输出了 TensorFlow 的版本号并且 GPU 数量正确,则说明安装成功[^1]。 #### 6. 安装 GPU 支持(可选) 如果需要使用 GPU 加速,确保系统已安装 CUDA 和 cuDNN。然后安装 TensorFlow 的 GPU 版本: ```bash conda install tensorflow-gpu ``` 注意:不要同时安装 `tensorflow` 和 `tensorflow-gpu`,否则可能会导致冲突[^1]。 --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值