3.
经济学 | 英语 | 数学 | |||
---|---|---|---|---|---|
复习时间(天) | 成绩 | 复习时间(天) | 成绩 | 复习时间(天) | 成绩 |
0 | 20 | 0 | 40 | 0 | 80 |
1 | 45 | 1 | 52 | 1 | 90 |
2 | 65 | 2 | 62 | 2 | 95 |
3 | 75 | 3 | 71 | 3 | 97 |
4 | 83 | 4 | 78 | 4 | 98 |
5 | 90 | 5 | 83 | 5 | 99 |
6 | 92 | 6 | 86 | 6 | 99 |
我们可以把分数看做效用,每增加一天复习时间,边际效用的增量就可以得出来
设三门科目的复习天数分别是x,y,z
则有 U = U ( x , y , z ) , 约 束 条 件 x + y + z = 6 U=U(x,y,z),约束条件x+y+z=6 U=U(x,y,z),约束条件x+y+z=6成立
构造拉格朗日函数 L ( x , y , z , λ ) = U ( x , y , z ) + λ ( 6 − x − y − z ) L(x,y,z,\lambda)=U(x,y,z)+\lambda(6-x-y-z) L(x,y,z,λ)=U(x,y,z)+λ(6−x−y−z)
对
x
,
y
,
z
,
λ
x,y,z,\lambda
x,y,z,λ四个变量分别求偏导数并令偏导数值等于0,得到
∂
L
∂
x
=
∂
U
∂
x
−
λ
=
0
\frac{\partial L}{\partial x}=\frac{\partial U}{\partial x}-\lambda=0
∂x∂L=∂x∂U−λ=0
∂ L ∂ y = ∂ U ∂ y − λ = 0 \frac{\partial L}{\partial y}=\frac{\partial U}{\partial y}-\lambda=0 ∂y∂L=∂y∂U−λ=0
∂ L ∂ z = ∂ U ∂ z − λ = 0 \frac{\partial L}{\partial z}=\frac{\partial U}{\partial z}-\lambda=0 ∂z∂L=∂z∂U−λ=0
所 以 ∂ U ∂ x = ∂ U ∂ y = ∂ U ∂ z = λ 所以\frac{\partial U}{\partial x}=\frac{\partial U}{\partial y}=\frac{\partial U}{\partial z}=\lambda 所以∂x∂U=∂y∂U=∂z∂U=λ
此时x,y,z的边际效用都相等,总效用达到最大
对照每种科目的边际效用,实际上是不连续的点函数
(第n天的边际效用) | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
经济学( ∂ U ∂ x \frac{\partial U}{\partial x} ∂x∂U) | 25 | 20 | 10 | 8 | 7 | 2 |
英语( ∂ U ∂ y \frac{\partial U}{\partial y} ∂y∂U) | 12 | 10 | 9 | 7 | 5 | 3 |
数学( ∂ U ∂ z \frac{\partial U}{\partial z} ∂z∂U) | 10 | 5 | 2 | 1 | 1 | 0 |
恰好当 ∂ U ∂ x = ∂ U ∂ y = ∂ U ∂ z = λ = 10 \frac{\partial U}{\partial x}=\frac{\partial U}{\partial y}=\frac{\partial U}{\partial z}=\lambda=10 ∂x∂U=∂y∂U=∂z∂U=λ=10时,总效用(也就是总成绩)可以达到最大值,此时经济学复习三天,英语复习两天,数学复习一天,恰好满足 x + y + z = 6 x+y+z=6 x+y+z=6的限制条件,所以最大效用(最高成绩)是75+62+90=227分。
4.
x,y两商品的无差异曲线每一点的斜率都等于-(y/x)
(1)证明:
由于效用函数与预算线相切时,交点处的效用最大化,此时需要满足的条件是
P
x
x
+
P
y
y
=
M
P_xx + P_y y = M
Pxx+Pyy=M
− y x = − p x p y -\frac{y}{x} = -\frac{p_x}{p_y} −xy=−pypx
所以联立可得 2 P x x = M , 即 x 的 需 求 函 数 是 x = M 2 P x 2P_xx=M,即x的需求函数是x=\frac{M}{2P_x} 2Pxx=M,即x的需求函数是x=2PxM.显然x商品的需求独立于y商品的价格
x商品需求的价格弹性 E p = d x d P x P x x E_p=\frac{dx}{dP_x} \frac{P_x}{x} Ep=dPxdxxPx,由于 d x d P x = − M 2 P x 2 \frac{dx}{dP_x}=-\frac{M}{2P_x^2} dPxdx=−2Px2M,代入得到 E p = − 1 E_p=-1 Ep=−1成立,所以x商品的价格弹性等于1。
(2) P x = 1 元 , P y = 2 元 , M = 120 元 P_x=1元,P_y=2元,M=120元 Px=1元,Py=2元,M=120元,求边际替代率
当效用最大化时,边际替代率等于两种商品的价格之比,等于 P x / P y = 1 / 2 P_x/P_y=1/2 Px/Py=1/2
(3)恩格尔曲线的形状,对x商品需求的收入弹性是多少?
恩格尔曲线(收入—购买量曲线)如果以收入为x轴,购买量为y轴,那么就有斜率为 d x d M = 1 2 P x \frac{dx}{dM}=\frac{1}{2P_x} dMdx=2Px1。
所以恩格尔曲线是斜率为 d x d M = 1 2 P x \frac{dx}{dM}=\frac{1}{2P_x} dMdx=2Px1,过原点的一条直线。
x商品需求的收入弹性 E M = d x d M M x E_M=\frac{dx}{dM} \frac{M}{x} EM=dMdxxM,由于 d x d M = 1 2 P x \frac{dx}{dM}=\frac{1}{2P_x} dMdx=2Px1,代入得 E M = 1 E_M=1 EM=1,所以需求的收入弹性为1.
5.
效用函数为 U ( x , y ) = α ln x + ( 1 − α ) ln y U(x,y) = \alpha \ln x + (1-\alpha)\ln y U(x,y)=αlnx+(1−α)lny,
由于效用函数与预算线相切时,交点处的效用最大化,此时需要满足的条件是
P
x
x
+
P
y
y
=
M
P_xx + P_y y = M
Pxx+Pyy=M
α x / 1 − α y = p x p y \frac{\alpha}{x}/\frac{1-\alpha}{y} = \frac{p_x}{p_y} xα/y1−α=pypx
联立两个方程,消去 P x , P y P_x,P_y Px,Py,可得对x,y两商品的需求分别是 α M P x , ( 1 − α ) M P y \frac{\alpha M}{P_x},\frac{(1-\alpha)M}{P_y} PxαM,Py(1−α)M.