启发式算法:遗传算法

本文介绍了遗传算法的概念、基本流程及关键操作,包括交叉变异、选择策略等。遗传算法通过模拟生物进化过程来寻找问题的最优解,其中交叉、变异和选择是其核心步骤。适应度函数用于评估个体的优劣,交叉包括单点、多点和均匀交叉等类型,变异则按照一定概率替换基因。文章还探讨了线性排序、指数排序和锦标赛选择等选择策略,并举例说明了遗传算法在求解函数最大/最小值问题的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

遗传算法-引例

在这里插入图片描述

  • 在一代代演化过程中,父母扇贝的基因组合产生新扇贝,所以遗传算法会选择两个原有的扇贝,然后对这两个扇贝的染色体进行随机交叉形成新的扇贝。
  • 迭代演化也会造成基因突变,遗传算法让新产生扇贝的基因以较小的概率发生变异。也就是说,染色体的像素值随机改变。
  • 对扇贝像素值和Firefox图标进行逐一比较,颜色相差得越大得显然表示越不像。这个评价得函数叫做“适应度函数”,它负责评价扇贝和Firefox的相似程度。
交叉变异

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cachel wood

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值