《应用多元统计分析》的马氏距离

本文详细探讨了《应用多元统计分析》中的马氏距离概念,通过例2.3.1证明了马氏距离等于c²时,向量集合形成椭圆或超椭球面。介绍了正交矩阵和对角化过程在证明中的应用,并讨论了当协方差矩阵为常数乘以单位矩阵时的特殊情况,最后阐述了平方马氏距离的计算及其在样本间距离度量中的作用。
摘要由CSDN通过智能技术生成

《应用多元统计分析》例2.3.1(有用结论)

设x是一个p维随机向量,E(x)=μ,V(x)=Σ>0,c为一整数,试证到μ的马氏距离固定为c的x集合,即
{ x : ( x − μ ) ′ Σ − 1 ( x − μ ) } = c 2 ( 2.3.6 ) \left \{ x:{\left ( x-\mu \right )}' \Sigma ^{-1}\left ( x-\mu \right )\right \}=c^{2} (2.3.6) { x:(xμ)Σ1(xμ)}=c22.3.6
是一个椭圆(p=2)或椭球面(p=3)或者超椭球面(p>3)。

书本的证明过程

 证明   存在正交矩阵T和对角线元素皆为正的对角矩阵Λ=diag(λ1​,λ2​,⋯,λp​),使得Σ=TΛT′。令y=T′(x−μ),于是
c 2 = { x : ( x − μ ) ′ Σ − 1 ( x − μ ) } c^{2} =\left \{ x:{\left ( x-\mu \right )}' \Sigma ^{-1}\left ( x-\mu \right )\right \} c2={ x:(xμ)Σ1(xμ)}

= y ′ Λ − 1 y ={y}'\Lambda ^{-1}y =yΛ1y

= y 1 2 λ 1 + y 2 2 λ 2 + ⋯ + y p 2 λ p =\frac{y_{1}^{2}}{\lambda_{1}}+\frac{y_{2}^{2}}{\lambda_{2}}+\cdots +\frac{y_{p}^{2}}{\lambda_{p}} =λ1y12+λ2y22++λpyp2
故(2.3.6)式当p=2时是一个椭圆,当p=3时是一个椭球面,当p>3时是一个超椭球面。

详细的证明过程补充

逆矩阵的基本性质: ( A − 1 ) ′ = ( A ′ ) − 1 \left ( A^{-1} \right )^{ {}'}=\left ( {A}' \right )^{-1} (A1)=(A)1
若A是正交矩阵,则 A − 1 = A ′ A^{-1}={A}' A1=A
则详细过程换算为:

c 2 = ( x − μ ) ′ Σ − 1 (

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值