飞行棋
1、问题描述
一维棋盘,起点在棋盘的最左侧,终点在棋盘的最右侧,棋盘上有几个位置和其他位置相连,如果A与B相连,但连接是单向的,即当棋子落在位置A时,可以选择不投骰子,直接移动棋子从A到B,但不能从B移动到A。给定这个棋盘的长度(length)和位置的相连情况(connections),用六面的骰子(点数1~6),问最少需要投几次才能到达终点。
2、问题示例
输入length=10
和connections=[[2,10]]
,输出为1
,可以0->2
(投骰子),2->10
(直接相连)。输入length=15
和connections=[[2,8],[6,9]]
,输出为2
,因为可以0->6
(投骰子),6->9
(直接相连),9-\>15
(投骰子)。
3、代码实现
class Solution:
def modernLudo(self, length, connections):
# 创建一个列表 ans,元素为 0 到 length 的索引,用于存储到达每个位置所需的最小步数,初始值为位置的索引
ans = [i for i in range(length + 1)]
# 遍历从 0 到 length 的位置
for i in range(length + 1):
# 模拟掷骰子,从 1 到 6 的情况
for j in range(1, 7):
# 如果当前位置 i 大于等于掷骰子的点数 j
if i >= j:
# 更新到达位置 i 的最小步数,取当前最小步数 ans[i] 和从位置 i - j 走一步到达位置 i 的最小步数(ans[i - j] + 1)中的较小值
ans[i] = min(ans[i], ans[i - j] + 1)
# 遍历连接关系
for j in connections:
# 如果当前位置 i 是连接关系的终点
if i == j[1]:
# 更新到达位置 i 的最小步数,取当前最小步数 ans[i] 和通过连接关系从起点 j[0] 到达位置 i 的最小步数(ans[j[0]])中的较小值
ans[i] = min(ans[i], ans[j[0]])
# 返回到达棋盘末尾位置的最小步数
return ans[length]
if __name__ == "__main__":
# 棋盘的长度
length = 15
# 连接关系,如 [2, 8] 表示位置 2 可以直接到达位置 8
connections = [[2, 8], [6, 9]]
# 创建 Solution 类的实例
solution = Solution()
# 打印棋盘长度
print("棋盘长度:", length)
# 打印连接关系
print("连接:", connections)
# 调用 modernLudo 方法计算并打印到达棋盘末尾的最小步数
print("最小需要:", solution.modernLudo(length, connections))
4、运行结果
棋盘长度: 15
连接: [[2, 8], [6, 9]]
最小需要: 2