day15飞行棋

飞行棋

1、问题描述

一维棋盘,起点在棋盘的最左侧,终点在棋盘的最右侧,棋盘上有几个位置和其他位置相连,如果A与B相连,但连接是单向的,即当棋子落在位置A时,可以选择不投骰子,直接移动棋子从A到B,但不能从B移动到A。给定这个棋盘的长度(length)和位置的相连情况(connections),用六面的骰子(点数1~6),问最少需要投几次才能到达终点。

2、问题示例

输入length=10connections=[[2,10]],输出为1,可以0->2(投骰子),2->10(直接相连)。输入length=15connections=[[2,8],[6,9]],输出为2,因为可以0->6(投骰子),6->9(直接相连),9-\>15(投骰子)。

3、代码实现

class Solution:
    def modernLudo(self, length, connections):
        # 创建一个列表 ans,元素为 0 到 length 的索引,用于存储到达每个位置所需的最小步数,初始值为位置的索引
        ans = [i for i in range(length + 1)]
        # 遍历从 0 到 length 的位置
        for i in range(length + 1):
            # 模拟掷骰子,从 1 到 6 的情况
            for j in range(1, 7):
                # 如果当前位置 i 大于等于掷骰子的点数 j
                if i >= j:
                    # 更新到达位置 i 的最小步数,取当前最小步数 ans[i] 和从位置 i - j 走一步到达位置 i 的最小步数(ans[i - j] + 1)中的较小值
                    ans[i] = min(ans[i], ans[i - j] + 1)
            # 遍历连接关系
            for j in connections:
                # 如果当前位置 i 是连接关系的终点
                if i == j[1]:
                    # 更新到达位置 i 的最小步数,取当前最小步数 ans[i] 和通过连接关系从起点 j[0] 到达位置 i 的最小步数(ans[j[0]])中的较小值
                    ans[i] = min(ans[i], ans[j[0]])
        # 返回到达棋盘末尾位置的最小步数
        return ans[length]


if __name__ == "__main__":
    # 棋盘的长度
    length = 15
    # 连接关系,如 [2, 8] 表示位置 2 可以直接到达位置 8
    connections = [[2, 8], [6, 9]]
    # 创建 Solution 类的实例
    solution = Solution()
    # 打印棋盘长度
    print("棋盘长度:", length)
    # 打印连接关系
    print("连接:", connections)
    # 调用 modernLudo 方法计算并打印到达棋盘末尾的最小步数
    print("最小需要:", solution.modernLudo(length, connections))

4、运行结果

棋盘长度: 15
连接: [[2, 8], [6, 9]]
最小需要: 2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Long韵韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值