有信息搜索——最佳优先搜索算法(贪婪和A*)

最佳优先搜索

核心:使用一个评估函数 f(n)给每个节点估计他们
的希望值。 每次搜索时优先扩展最有希望的未扩展节点。
它包括贪婪最佳优先搜索和A*搜索两个算法。

贪婪搜索

评估函数: f(n) = h(n) (heuristic,启发函数)
= 估计从节点n到目标的代价
拿罗马尼亚度假问题举例

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
算法分析:
容易看到,贪婪算法有可能限于死循环中,比如, Iasi ->Neamt -> Iasi -> Neamt ,不具备完备性。
因为类似于树搜索,每次扩展b个结点,时间和空间复杂度都是O(b^m)。

A*搜索

核心:避免扩展代价已经很高的节点。
评估函数 f(n) = g(n) + h(n)
g(n) = 到达节点n已经发生的实际代价
h(n) = 从节点n到目标的代价估计值
仍旧用刚才例子走一遍
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
可以看出A算法的最终结果更优。
算法分析:
如果启发式函数h(n)对于任意的节点n都满足 h(n) ≤ h
(n),那么h(n)可采纳,此时A*是最优的。
证明如下:
在这里插入图片描述
在这里插入图片描述
但是现在仍有一个问题,就是在每次扩展结点时,总是把所有的待测节点存入内存中,空间复杂度很高,因此考虑优化,引出递归最佳优先搜索。

A*改进——递归最佳优先搜索(RBFS)

  1. 记录当前节点的祖先可得到的最佳可替换路径的f值。
  2. 如果当前的f值超过了这个限制,则递归将转回到替换路径。
  3. 向上回溯改变f值到它的孩子的最佳f 值
  4. 重复扩展这个上个节点,因为仍有可能存在较优解。
    依旧上图上例子。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

启发函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值