最优化建模算法理论之Goldstein准则(数学原理及MATLAB实现)


一、前言

为了克服 Armijo 准则的缺陷,我们需要引入其他准则来保证每一步的 α k \alpha^k αk 不会太小

既然 Armijo 准则只要求点 ( α , ϕ ( α ) ) (\alpha, \phi(\alpha)) (α,ϕ(α)) 必须处在某直线下方,我们也可使用相同的形式使得该点必须处在另一条直线的上方。

这就是 Armijo-Goldstein 准则,简称 Goldstein 准则。


二、Goldstein准则

1. 定义

d k d^k dk 是点 x k x^k xk 处的下降方向,若

f ( x k + α d k ) ≤ f ( x k ) + c α ∇ f ( x k ) T d k , f ( x k + α d k ) ≥ f ( x k ) + ( 1 − c ) α ∇ f ( x k ) T d k \begin{aligned} &f(x^k + \alpha d^k) \le f(x^k) + c\alpha \nabla f(x^k)^Td^k,\\ &f(x^k + \alpha d^k) \ge f(x^k) + (1 - c)\alpha \nabla f(x^k)^Td^k \end{aligned} f(xk+αdk)f(xk)+cαf(xk)Tdk,f(xk+αdk)f(xk)+(1c)αf(xk)Tdk

则称步长 α \alpha α 满足 Goldstein 准则,其中 c ∈ ( 0 , 1 2 ) c \in (0, \dfrac{1}{2}) c(0,21)

2. 几何含义

与 Armjio 准则相类似,Goldstein 准则也有非常直观的几何含义,它指的是点 ( α , ϕ ( α ) ) (\alpha, \phi(\alpha)) (α,ϕ(α)) 必须在两条直线

l 1 ( α ) = ϕ ( 0 ) + c α ∇ f ( x k ) T d k , l 2 ( α ) = ϕ ( 0 ) + ( 1 − c ) α ∇ f ( x k ) T d k \begin{aligned} &l_1(\alpha) = \phi(0) + c\alpha \nabla f(x^k)^Td^k,\\ &l_2(\alpha) = \phi(0) + (1 - c)\alpha \nabla f(x^k)^Td^k \end{aligned} l1(α)=ϕ(0)+cαf(xk)Tdk,l2(α)=ϕ(0)+(1c)αf(xk)Tdk

之间。如下图所示:

在这里插入图片描述

区间 [ α 1 , α 2 ] [\alpha_1, \alpha_2] [α1,α2] 中的点均满足 Goldstein 准则,同时我们也注意到 Goldstein 准则确实去掉了过小的 α \alpha α


三、代码实现

MATLAB 代码如下:

function [alpha, xk, f, k] = Goldstein(fun, grid, x0, dk)
	%
	% Function [alpha, xk, fx, k] = Goldstein(fun, grid, x0, dk)
	% 求出函数fun在x0处以dk为下降方向时的步长alpha,同时返回相对应的下
	% 一个下降点xk以及xk处的函数值fx,k为迭代次数
	% -----------------------------------------------------------
	% 输入: 
	% 	fun 	函数名称(字符变量)
	%	grid 	梯度函数名称(字符变量)
	%	x0		迭代点(列向量)
	%	dk		函数在迭代点处的下降方向(列向量)
	%
	% 输出:
	%	alpha	函数在x0处以dk为下降方向时的下降步长
	%	xk		函数在x0处以dk为下降方向,以alpha为步长
	%			求得的下降点
	%	f	    函数在下降点xk处的函数值
	%	k		求步长算法迭代次数
	% -----------------------------------------------------------
	% by Zhi Qiangfeng 
	%
	c = 0.3; 	% 泰勒展开式补足系数,0 < c < 1/2
	alpha = 1; 	% 初始步长为 1
	k = 0; 		% 统计迭代次数
    a = 0; b = inf; % 二分法确定 alpha 值
	gk = feval(grid, x0);	% x0处的梯度值
	fk = feval(fun, x0 + alpha * dk); 	% 函数在下一个迭代点处的目标函数值
	l1 = feval(fun, x0) + c * alpha * gk' * dk; 	% Armjio准则
    l2 = feval(fun, x0) + (1 - c) * alpha * gk' * dk; 	% Armjio准则的补全
	while true
	    if fk > l1
            k = k + 1;
            b = alpha;
            alpha = (a + b) / 2;
            fk = feval(fun, x0 + alpha * dk);
            l1 = feval(fun, x0) + c * alpha * gk' * dk;
            l2 = feval(fun, x0) + (1 - c) * alpha * gk' * dk;
            continue;
        end
        if fk < l2
            k = k + 1;
            a = alpha;
            alpha = min([2 * alpha, (a + b) / 2]);
            fk = feval(fun, x0 + alpha * dk);
            l1 = feval(fun, x0) + c * alpha * gk' * dk;
            l2 = feval(fun, x0) + (1 - c) * alpha * gk' * dk;
            continue;
        end
        break;
	end
	xk = x0 + alpha * dk;	% 下降点
	f = feval(fun, xk);	    % 下降点处函数值
end

四、与Armjio准则的对比

以求解 Rosenbrock 函数为例,这是优化领域中一个著名的检验函数,函数表达式如下:

f ( x ) = 100 ( x 2 − x 1 2 ) 2 + ( 1 − x 1 ) 2 , g ( x ) = [ − 400 x 1 x 2 + 400 x 1 3 + 2 x 1 − 2 ; 200 x 2 − 200 x 1 2 ] \begin{aligned} &f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2,\\ &g(x) = \left[\begin{aligned}-400x_1x_2 + 400x_1^3 + 2x_1 - 2;\\200x_2 - 200x_1^2\end{aligned}\right] \end{aligned} f(x)=100(x2x12)2+(1x1)2,g(x)=[400x1x2+400x13+2x12;200x2200x12]

编写函数文件 fun.m 如下:

function f = fun(x)
f = 100 * (x(2) - x(1)^2)^2 + (1 - x(1))^2;
end

随后是梯度函数文件 grid.m 如下:

function g = grid(x)
g = [-400 * x(1) * x(2) + 400 * x(1)^3 + 2 * x(1) - 2;
    200 * x(2) - 200 * x(1)^2];
end

Armjio 准则代码参考此篇博客:最优化建模算法理论之Armjio准则(数学原理及MATLAB实现)

求解方法采用 BFGS 拟牛顿方法,代码参考此篇博客:最优化建模算法理论之BFGS/DFP拟牛顿方法(数学原理及MATLAB实现)

编写求解代码如下:

x0 = [-10; 10];
[f, xk, k] = BFGS(x0, 'fun', 'grid', 1e-5, 1000)

初始点选为 [-10, 10],若采用 Armjio 准则求步长,输出如下:

>> resolve
f =
   8.7712e-17
xk =
    1.0000
    1.0000
k =
    70
>> 

迭代了 70 次,若采用 Goldstein 准则,输出如下:

>> resolve
f =
   8.3501e-20
xk =
    1.0000
    1.0000
k =
    60
>> 

迭代了 60 次即达到了精度要求,并且求解的函数值 f = 8.3501e-20 还要优于 Armjio 准则。


五、总结

不喜欢写总结。

  • 20
    点赞
  • 70
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
Armijo-Goldstein 准则是一种常用的学习率更新策略,用于优化算法中的步长选择。其核心思想是在每次更新步长时,根据当前的梯度信息和目标函数的变化情况来动态调整步长的大小,以便更快地收敛。 在 Matlab实现 Armijo-Goldstein 准则的学习率更新,可以按照以下步骤进行: 1. 定义目标函数和梯度计算函数。例如,假设目标函数为 f(x),梯度函数为 grad_f(x),可以使用 Matlab 中的函数句柄来定义: ```matlab f = @(x) ... % 目标函数 grad_f = @(x) ... % 梯度函数 ``` 2. 定义 Armijo-Goldstein 准则中的参数。Armijo-Goldstein 准则中有两个参数,一个是收缩因子 rho,另一个是常数 c。可以根据实际情况来调整这两个参数的大小: ```matlab rho = 0.5; % 收缩因子 c = 0.1; % 常数 ``` 3. 实现 Armijo-Goldstein 准则的学习率更新。具体实现方法如下: ```matlab alpha = 1; % 初始学习率 while f(x - alpha * grad_f(x)) > f(x) - c * alpha * norm(grad_f(x))^2 alpha = rho * alpha; % 更新学习率 end ``` 在这段代码中,首先初始化学习率 alpha 为1,然后根据 Armijo-Goldstein 准则的判定条件,如果目标函数的变化量大于一定的阈值,就按照收缩因子 rho 来动态调整学习率。最终,返回更新后的学习率 alpha。 需要注意的是,这里的 x 是优化算法中的参数向量,需要根据具体的优化算法来进行更新。例如,在梯度下降算法中,x 的更新方式为: ```matlab x = x - alpha * grad_f(x); ``` 这样,就可以使用 Armijo-Goldstein 准则来动态调整学习率,提高优化算法的收敛速度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Z.Q.Feng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值