数学中应当敏感的东西

杂记

y = ∣ x ∣ x 分 析 y=\frac{\left | x\right | }{x}分析 y=xx

y = ∣ x ∣ x 是 一 个 有 界 函 数 , 且 当 x = 0 时 是 跳 跃 间 断 点 y=\frac{\left | x\right | }{x}是一个有界函数,且当x=0时是跳跃间断点 y=xxx=0
在这里插入图片描述

例 如 : lim ⁡ x → 0 ∣ x ∣ sin ⁡ ∣ x ∣ x , 由 于 ∣ x ∣ x 是 一 个 有 界 函 数 , sin ⁡ x 是 无 穷 小 ( 当 x → 0 ) , 所 以 原 极 限 为 0 例如:\lim\limits_{x\to0}\frac{\left|x\right|\sin |x|}{x},由于\frac{\left | x\right | }{x}是一个有界函数,\sin x是无穷小(当x\to0),所以原极限为0 x0limxxsinx,xxsinx(x0)0

二级结论

有关极限的二级结论

1. lim ⁡ x → ∞ ( 1 + a x ) x = e a \lim\limits_{x\to\infty}(1+\frac{a}{x})^{x}=e^{a} xlim(1+xa)x=ea
2. lim ⁡ x → ∞ n × ( a n + b n + c n − 3 3 ) = 1 3 lim ⁡ x → ∞ ( a n − 1 ) + ( b n − 1 ) + ( c n − 1 ) 1 n = 1 3 ( ln ⁡ a + ln ⁡ b + ln ⁡ c ) = ln ⁡ a b c 3 \begin{aligned} &\lim\limits_{x\to\infty}n\times (\frac{\sqrt[n]{a}+\sqrt[n]{b}+\sqrt[n]{c}-3}{3})\\ &=\frac{1}{3}\lim\limits_{x\to\infty}\frac{(\sqrt[n]{a}-1)+(\sqrt[n]{b}-1)+(\sqrt[n]{c}-1)}{\frac{1}{n}}\\ &=\frac{1}{3}(\ln_{}{a} +\ln_{}{b} +\ln_{}{c} )\\ &=\ln_{}{\sqrt[3]{abc}}\\ \end{aligned} xlimn×(3na +nb +nc 3)=31xlimn1(na 1)+(nb 1)+(nc 1)=31(lna+lnb+lnc)=ln3abc
3. 如 果 极 限 存 在 且 分 母 趋 于 0 , 则 分 子 一 定 也 趋 于 0 如果极限存在且分母趋于0,则分子一定也趋于0 00

4. lim ⁡ x → ∞ a 1 n + a 2 n + ⋯ + a m n n = m a x { a i } , 其 中 a i > 0 , ( i = 1 , 2 , ⋯   , m ) . \lim\limits_{x\to\infty}\sqrt[n]{a_1^n+a_2^n+\cdots+a_m^n}=max\left\{a_i\right\},其中a_i>0,(i=1,2,\cdots,m). xlimna1n+a2n++amn =max{ai},ai>0,(i=1,2,,m).

证明:
令 m a x { a i } = a , 则 : 令max\left\{a_i\right\}=a,则: max{ai}=a,
a n n ≤ a 1 n + a 2 n + ⋯ + a m n n ≤ m a n n \sqrt[n]{a^n}\le\sqrt[n]{a_1^n+a_2^n+\cdots+a_m^n}\le\sqrt[n]{ma^n} nan na1n+a2n++amn nman lim ⁡ x → ∞ a n n = a \lim\limits_{x\to\infty}\sqrt[n]{a^n}=a xlimnan =a lim ⁡ x → ∞ m ⋅ a n n = lim ⁡ x → ∞ a ⋅ m 1 n = a \lim\limits_{x\to\infty}\sqrt[n]{m\cdot a^n}=\lim\limits_{x\to\infty}a\cdot m^{\frac{1}{n}}=a xlimnman =xlimamn1=a 则 lim ⁡ x → ∞ a 1 n + a 2 n + ⋯ + a m n n = a 则\lim\limits_{x\to\infty}\sqrt[n]{a_1^n+a_2^n+\cdots+a_m^n}=a xlimna1n+a2n++amn =a
5. 幂指替换的时候可能会用到: lim ⁡ x → 0 sin ⁡ x ⋅ ln ⁡ x = 0 \lim\limits_{x\to0}\sin x\cdot\ln x=0 x0limsinxlnx=0
证 明 : 证明 : :
原 式 = lim ⁡ x → ∞ ln ⁡ x 1 sin ⁡ x = lim ⁡ x → ∞ 1 x − cos ⁡ x sin ⁡ 2 x = lim ⁡ x → ∞ 1 x ⋅ − sin ⁡ 2 x cos ⁡ x = lim ⁡ x → ∞ sin ⁡ x x ⋅ ( − tan ⁡ x ) = − tan ⁡ x = 0 \begin{aligned} 原式&=\lim\limits_{x\to\infty}\frac{\ln x}{\frac{1}{\sin x}}\\ &=\lim\limits_{x\to\infty}\frac{\frac{1}{x}}{-\frac{\cos x}{\sin^2x}}\\ &=\lim\limits_{x\to\infty}{\frac{1}{x}}\cdot{\frac{-\sin^2 x}{\cos x}}\\ &=\lim\limits_{x\to\infty}\frac{\sin x}{x}\cdot(-\tan x)\\ &=-\tan x\\ &=0\\ \end{aligned} =xlimsinx1lnx=xlimsin2xcosxx1=xlimx1cosxsin2x=xlimxsinx(tanx)=tanx=0

极限

1.关于 sin ⁡ 1 x \sin \frac{1}{x} sinx1应该想到:

(1)用无穷小量乘有界函数
(2) lim ⁡ x → ∞ s i n 1 x 1 x = 1 \lim\limits_{x \to \infty} \frac{sin \frac{1}{x} }{\frac{1}{x}} =1 xlimx1sinx1=1
(3)用不等式放缩时想到 sin ⁡ x ≤ 1 \sin x\le1 sinx1
(4) 当 x → 0 时 , x ∼ sin ⁡ x 当x\to0时,x\sim\sin x x0,xsinx
(5) 当 x → 0 时 , x − sin ⁡ x ∼ 1 6 x 3 当x\to0时,x-\sin x\sim\frac{1}{6}x^3 x0,xsinx61x3

2. x x ( x + 1 ) x \frac{x^x}{(x+1)^x} (x+1)xxx应该想到:

x x ( x + 1 ) x = ( x x + 1 ) x = 1 ( 1 + 1 x ) x \frac{x^x}{(x+1)^x} =(\frac{x}{x+1})^x=\frac{1}{(1+\frac{1}{x})^x} (x+1)xxx=(x+1x)x=(1+x1)x1

3.看到 ln() 应该想到 ln ⁡ ( 1 + x ) ∼ x \ln_{}{(1+x)}\sim x ln(1+x)x

例如:
求 lim ⁡ x → 0 ln ⁡ ( cos ⁡ x ) x 2 求\lim\limits_{x\to0}\frac{\ln_{}({\cos x})}{x^2} x0limx2ln(cosx)
解:
原 式 = lim ⁡ x → 0 ln ⁡ [ 1 + ( cos ⁡ x − 1 ) ] x 2 ( 使 用 ln ⁡ ( 1 + x ) ∼ x ) = lim ⁡ x → 0 cos ⁡ x − 1 x 2 = lim ⁡ x → 0 − 1 2 x 2 x 2 = − 1 2 \begin{aligned} 原式&=\lim\limits_{x\to0}\frac{\ln_{}[{1+(\cos x-1)}]}{x^2}\quad(使用\ln_{}{(1+x)}\sim x)\\ &=\lim\limits_{x\to0}\frac{\cos x-1}{x^2}\\ &=\lim\limits_{x\to0}\frac{-\frac{1}{2}x^2}{x^2}\\ &=-\frac{1}{2} \end{aligned} =x0limx2ln[1+(cosx1)](使ln(1+x)x)=x0limx2cosx1=x0limx221x2=21

4.看到对勾函数(形如: f ( x ) = a x + b x ( a b > 0 ) f(x)=ax+\frac{b}{x}(ab>0) f(x)=ax+xb(ab>0)),应该想到用基本不等式

5.单调存在准则中证明数列有上界的方法:数学归纳法

例 : 证 明 数 列 2 , 2 + 2 , 2 + 2 + 2 , ⋯ 的 极 限 存 在 。 例:证明数列\sqrt{2},\sqrt{2+\sqrt{2}},\sqrt{2+\sqrt{2+\sqrt{2}},}\cdots的极限存在。 2 ,2+2 ,2+2+2 ,

[ 证 明 ] : [证明]: []:
n = 1 时 , x 1 = 2 < 2. 假 设 n = k 时 , x k < 2. 当 n = k + 1 时 , x k + 1 = 2 + x k < 2 + 2 = 2. 故 x n < 2 ( n ∈ N + ) . \begin{aligned} &n=1时,x_1=\sqrt{2}<2.\\ &假设n=k时,x_k<2.\\ &当n=k+1时,x_{k+1}=\sqrt{2+x_k}<\sqrt{2+2}=2.\\ &故x_n<2(n\in\mathrm {N_+}). \end{aligned} n=1x1=2 <2.n=kxk<2.n=k+1,xk+1=2+xk <2+2 =2.xn<2(nN+).

6.遇到想 x cos ⁡ x + sin ⁡ x x\cos x+\sin x xcosx+sinx时应该想到:

-x,+x,凑出 x ( cos ⁡ x − 1 ) + 1 − sin ⁡ x x(\cos x-1)+1-\sin x x(cosx1)+1sinx

7.遇到大根号的式子:

(1).使用 ( 1 + x ) n − 1 ∼ n x (1+x)^n-1\sim nx (1+x)n1nx
(2).有理化(这个其实不好想到)
例题:
(这道题不要拆开,因为拆开后的两部分极限不存在。
详细链接:https://blog.csdn.net/weixin/article/details/121055791
lim ⁡ x → 0 1 + x cos ⁡ x − 1 + sin ⁡ x x 2 \lim\limits_{x\to0}\frac{\sqrt{1+x\cos x}-\sqrt{1+\sin x}}{x^2} x0limx21+xcosx 1+sinx
解: 原 式 = lim ⁡ x → 0 1 1 + x cos ⁡ x + 1 + sin ⁡ x ⋅ x cos ⁡ x − sin ⁡ x x 3 = 1 2 lim ⁡ x → 0 x cos ⁡ x − sin ⁡ x x 3 = 1 2 lim ⁡ x → 0 cos ⁡ x − x sin ⁡ x − cos ⁡ x 3 x 2 = − 1 2 lim ⁡ x → 0 x sin ⁡ x 3 x 2 ( 这 里 用 一 下 等 价 无 穷 小 更 快 ) = − 1 2 lim ⁡ x → 0 sin ⁡ x + x cos ⁡ x 6 x = − 1 2 lim ⁡ x → 0 cos ⁡ x + cos ⁡ x − x sin ⁡ x 6 = − 1 6 \begin{aligned} 原式&=\lim\limits_{x\to0}\frac{1}{\sqrt{1+x\cos x}+\sqrt{1+\sin x}}\cdot\frac{x\cos x-\sin x}{x^3}\\ &=\frac{1}{2}\lim\limits_{x\to0}\frac{x\cos x-\sin x}{x^3}\\ &=\frac{1}{2}\lim\limits_{x\to0}\frac{\cos x-x\sin x-\cos x}{3x^2}\\ &=-\frac{1}{2}\lim\limits_{x\to0}\frac{x\sin x}{3x^2}(这里用一下等价无穷小更快)\\ &=-\frac{1}{2}\lim\limits_{x\to0}\frac{\sin x+x\cos x}{6x}\\ &=-\frac{1}{2}\lim\limits_{x\to0}\frac{\cos x+\cos x-x\sin x}{6}\\ &=-\frac{1}{6}\\ \end{aligned} =x0lim1+xcosx +1+sinx 1x3xcosxsinx=21x0limx3xcosxsinx=21x0lim3x2cosxxsinxcosx=21x0lim3x2xsinx()=21x0lim6xsinx+xcosx=21x0lim6cosx+cosxxsinx=61

8.遇到带有三角函数求极限

(1).用构造无穷小×三角函数
例题:
lim ⁡ x → ∞ 2 x 2 + x sin ⁡ x x 2 − x cos ⁡ 2 x + 1 \lim\limits_{x\to \infty}\frac{2x^2+x\sin x}{x^2-x\cos 2x+1} xlimx2xcos2x+12x2+xsinx
解:
原 式 = lim ⁡ x → ∞ 2 + sin ⁡ x x 1 − 1 x cos ⁡ 2 x + 1 x 2 ( 上 下 同 除 以 x 2 ) = 2 \begin{aligned} 原式&=\lim\limits_{x\to \infty}\frac{2+\frac{\sin x}{x}}{1-\frac{1}{x}\cos 2x+\frac{1}{x^2}}(上下同除以x^2)\\ &=2\\ \end{aligned} =xlim1x1cos2x+x212+xsinx(x2)=2

9.化简 1 ( x − 1 ) ( x + 1 ) \frac{1}{(x-1)(x+1)} (x1)(x+1)1

1 ( x − 1 ) ( x + 1 ) = 1 2 [ ( x + 1 ) − ( x − 1 ) ( x − 1 ) ( x + 1 ) ] = 1 2 [ 1 x − 1 − 1 x + 1 ] \frac{1}{(x-1)(x+1)}=\frac{1}{2}\left [ \frac{(x+1)-(x-1)}{(x-1)(x+1)}\right ] =\frac{1}{2}\left [\frac{1}{x-1}-\frac{1}{x+1}\right ] (x1)(x+1)1=21[(x1)(x+1)(x+1)(x1)]=21[x11x+11]

绝对值(求极限遇到绝对值要分左右)。

求极限遇到绝对值要分左右。

例题:
设 f ( x ) 可 导 , 且 F ( x ) = f ( x ) ( 1 + ∣ sin ⁡ x ∣ ) 在 x = 0 处 可 导 , 则 ( f ( 0 ) = 0 ) . 设f(x)可导,且F(x)=f(x)(1+\left|\sin x\right|)在x=0处可导,则(f(0)=0). f(x)F(x)=f(x)(1+sinx)x=0(f(0)=0).
解:

由 题 目 知 : F ( 0 ) = 0 由题目知:F(0)=0 F(0)=0

F + ′ ( x ) = lim ⁡ x → 0 + f ( x ) ( 1 + sin ⁡ x ) − f ( 0 ) x = lim ⁡ x → 0 + f ( x ) − f ( 0 ) x + lim ⁡ x → 0 + f ( x ) ⋅ sin ⁡ x x = f ′ ( 0 ) + f ( 0 ) ( 出 现 f ( 0 ) 是 因 为 连 续 ) F − ′ ( x ) = lim ⁡ x → 0 − f ( x ) ( 1 − sin ⁡ x ) − f ( 0 ) x = lim ⁡ x → 0 + f ( x ) − f ( 0 ) x − lim ⁡ x → 0 + f ( x ) ⋅ sin ⁡ x x = f ′ ( 0 ) − f ( 0 ) ( 出 现 f ( 0 ) 是 因 为 连 续 ) \begin{aligned} {F}'_{+}(x)&=\lim\limits_{x\to0^+}\frac{f(x)(1+\sin x)-f(0)}{x}\\&=\lim\limits_{x\to0^+}\frac{f(x)-f(0)}{x}+\lim\limits_{x\to0^+}\frac{f(x)\cdot\sin x}{x}\\ &={f}'(0)+f(0)(出现f(0)是因为连续)\\ {F}'_{-}(x)&=\lim\limits_{x\to0^-}\frac{f(x)(1-\sin x)-f(0)}{x}\\&=\lim\limits_{x\to0^+}\frac{f(x)-f(0)}{x}-\lim\limits_{x\to0^+}\frac{f(x)\cdot\sin x}{x}\\ &={f}'(0)-f(0)(出现f(0)是因为连续)\\\end{aligned} F+(x)F(x)=x0+limxf(x)(1+sinx)f(0)=x0+limxf(x)f(0)+x0+limxf(x)sinx=f(0)+f(0)(f(0))=x0limxf(x)(1sinx)f(0)=x0+limxf(x)f(0)x0+limxf(x)sinx=f(0)f(0)(f(0))

∵ F − ′ ( x ) = F − ′ ( x ) \because{F}'_{-}(x)={F}'_{-}(x) F(x)=F(x)
∴ f ( 0 ) = 0 \therefore f(0)=0 f(0)=0

导数

幂指函数或者连乘连除函数使用对数求导

( 腹 肌 P 36 例 13 ) 设 y = ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 4 ) , 求 y ′ . (腹肌P36例13)设y=\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}},求{y}'. P3613y=(x3)(x4)(x1)(x2) ,y.
解:
ln ⁡ y = 1 2 [ ln ⁡ ( x − 1 ) + ln ⁡ ( x − 2 ) − ln ⁡ ( x − 3 ) − ln ⁡ ( x − 4 ) ] y ′ y = 1 2 ( 1 x − 1 + 1 x − 2 − 1 x − 3 − 1 x − 4 ) y ′ = 1 2 ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 4 ) ( 1 x − 1 + 1 x − 2 − 1 x − 3 − 1 x − 4 ) \begin{aligned} &\ln y=\frac{1}{2}\left [ \ln(x-1)+\ln(x-2)-\ln(x-3)-\ln(x-4) \right ] \\ &\frac{{y}'}{y}=\frac{1}{2}\left(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}\right)\\ &{y}'=\frac{1}{2}\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}}\left(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}\right)\\ \end{aligned} lny=21[ln(x1)+ln(x2)ln(x3)ln(x4)]yy=21(x11+x21x31x41)y=21(x3)(x4)(x1)(x2) (x11+x21x31x41)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值