R语言:随机森林分类+影响因子重要性可视化

本文介绍了如何使用R语言中的randomForest包进行随机森林分类,包括数据准备、处理缺失值、构建模型、评估变量重要性和模型可视化。作者展示了如何通过randomForest()函数创建模型并分析其性能,以及如何通过MDSplot等函数进行结果可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随机森林分类

  • 一组(多个)预测变量预测一个结果

  • 我的理解:任一变量都不能单独作为判别好或坏的标准,建模的目的是找到多个变量(气象因子)的某种组合,从而实现对因变量(树皮厚度)的准确预测

(1)数据准备

(2)randomForest包:提供randomForest()函数用于随机森林

  • rflmpute()函数:对数据缺失值进行插补

  • treesize()函数:查看模型每颗决策树的节点数

  • importtance():提取模型中各变量对模型的重要性

  • MDSplot函数绘制坐标图

  • MDSplot()函数用于实现随机森林的可视化

  • MDSplot(rf, fac, k=2, palette=NULL, pch=20, ...)

  • rf为randomForest对象,需要说明的是,在构建随机森林模型时必须指定计算临近矩阵,即设置proximity参数为TRUE;

  • fac指定随机森林模型中所使用到的因子向量(因变量);

  • palette指定所绘图形中各个类别的颜色;

  • pch指定所绘图形中各个类别形状;

  • 还可以通过R自带的plot函数绘制随机森林决策树的数目与模型误差的折线图

代码如下

library(randomForest)

set.seed(1234)#该命令的作用是设定生成随机数的种子,种子是为了让结果具有重复性。生成的随机数无法重现

fit.forest <- randomForest(class~., data=df.train,        

                           na.action=na.roughfix,

                           importance=TRUE)  

#设置proximity=TRUE,则指定计算临近矩阵

fit.forest

importance(fit.forest, type=2) 

#验证(可无)

forest.pred <- predict(fit.forest, df.validate)         

forest.perf <- table(df.validate$class, forest.pred, 

                     dnn=c("Actual", "Predicted"))

forest.perf

#随机森林的可视化

hist(treesize(fit.forest))##展示随机森林中每棵树决策树的节点数

plot(fit.forest)#模型误差图

#对模型提取重要值列表

dev.new(

  title = "RDA scaling 1 and 2 + lc",

  width = 16,

  height = 8,

  noRStudioGD = TRUE

)

varImpPlot(fit.forest, main = "variable importance")

随机森林是一种广泛应用于机器学习和数据挖掘领域的算法,可以用于筛选关键因子,而R语言是一种常用的用于数据分析和统计建模的编程语言随机森林通过组合多个决策树来进行预测或分类,它的基本原理是在每个决策树的节点上随机选取一部分特征进行分割。这样,每个决策树都会得到一组关键因子,而随机森林的结果是基于所有决策树的集成结果。 在R语言中,可以使用randomForest包来实现随机森林算法。首先,我们需要准备一个包含所有特征和目标变量的数据集。然后,使用randomForest函数来构建随机森林分类器或回归器。可以通过设置参数来控制随机森林的树的数量、最小分割节点的大小等。训练完成后,可以使用varImpPlot函数来可视化各个特征的重要性随机森林可以根据特征的重要性来筛选关键因子。通过观察特征的重要性排序,我们可以确定哪些因子对于预测或分类的准确性有较大的贡献。在挑选关键因子时,我们可以选择重要性较高的特征,而忽略重要性较低的特征。 总结来说,使用R语言中的随机森林算法来筛选关键因子的步骤如下:准备数据集,构建随机森林分类器或回归器,训练模型,根据特征的重要性排序来挑选关键因子。随机森林不仅可以用于特征筛选,还可以用于生成预测模型和分类模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮肤小白生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值