Paddle-OCR的学习以及运用到python游戏脚本中

1.首先安装CUDA和

1.1 CUDA

下载地址:https://developer.nvidia.com/cuda-toolkit-archive
安装教程:CUDA安装教程点这里

1.3 cuDNN

首先去这个页面 查询对应推荐版本
下载地址:https://developer.nvidia.com/rdp/cudnn-archive
我的CUDA 11.6,推荐搭配 cuDNN 8.4.0

### PythonPaddleOCR 的使用教程 #### 安装依赖库 为了能够顺利使用 PaddleOCR,在开始之前需确保已安装所有必需的库。可以通过如下命令来完成这些库的安装: ```bash !pip install paddlepaddle paddleocr baidu-aip ``` 此操作会下载并配置好用于光学字符识别(OCR)所需的基础环境以及百度AI开放平台SDK,方便后续调用API接口[^1]。 #### 初始化 OCR 对象 创建一个新的Python脚本文件`ExtractText.py`,并在其中定义一个函数来进行图像中文本的提取工作。首先引入必要的模块,并初始化PaddleOCR实例: ```python from paddleocr import PaddleOCR def init_ocr(): ocr = PaddleOCR(use_angle_cls=True, lang='ch') # 启用角度分类器和支持中文 return ocr ``` 这段代码设置了参数`use_angle_cls`为True以便支持倾斜文本检测,并指定了语言模型为中国汉语(`lang='ch'`)。 #### 执行 OCR 处理 接下来编写具体的逻辑去读取指定路径下的图片数据,并通过刚才建立好的OCR引擎获取其上的文字信息: ```python import os def extract_text_from_image(image_path): ocr = init_ocr() result = ocr.ocr(image_path, cls=True) text_results = [] for line in result: txts = [line[1][0]] text_results.extend(txts) return '\n'.join(text_results) if __name__ == "__main__": path = "example.jpg" # 修改此处为你自己的图片路径 recognized_text = extract_text_from_image(path) print(recognized_text) ``` 这里实现了从给定位置加载一张测试图样作为输入源,经过一系列预处理之后交给`ocr()`方法执行实际的文字定位与解析任务;最后遍历返回的结果列表并将每行记录下来的字符串拼接成完整的输出内容显示出来[^2]。 对于更复杂的应用场景比如视频帧内的实时字幕抓取,则还需要额外导入OpenCV等计算机视觉工具包辅助完成画面捕捉及定时采样的功能实现[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值