Task2 Softmax回归

本文介绍了如何使用PyTorch实现Softmax回归,包括数据导入、模型初始化、CrossEntropyLoss函数应用、SGD优化器设计,以及在Fashion-MNIST数据集上的训练过程。通过学习,读者将理解如何估计多类别概率并进行分类预测。
摘要由CSDN通过智能技术生成

Softmax回归

Softmax回归

Softmax回归为了分类任务而设计,相较于线性回归多了softmax函数映射。为了估计所有可能类别的条件概率,我们需要一个有多个输出的模型,每个类别对应一个输出。在训练softmax回归模型后,给出任何样本特征,我们可以预测每个输出类别的概率。通常我们使用预测概率最高的类别作为输出类别。如果预测与实际类别(标签)一致,则预测是正确的。
softmax函数

实现过程

  1. 导入数据
import torch
from torch import nn
from d2l import torch as d2l


batch_size = 256
train_iter, test_iter = d2l
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值