Yolov8分类检测记录

1.先到github上下载,ultralytics源代码
2.pycharm新建一个项目
请添加图片描述
3.准备训练数据
请添加图片描述
数据的结构如下
请添加图片描述
不需要.yaml文件,代码会自动识别要分的类
4.创建一个训练文件

import torch
import random
import cv2
import numpy as np
import os
from ultralytics import YOLO

def TrainData():
    model = YOLO('D:\\Source\\SourceMe\\PythonProject\\TrainClassificationPill\\TrainClassificationPill\\yolov8x-cls.pt')
    
    '''这里把amp设置成False,不然训练的时候回去网上默认下载预处理权重'''
    results = model.train(data='D:\\Source\\SourceMe\\PythonProject\\TrainClassificationPill\\TrainClassificationPill\\Dataset', 
    epochs=200,
    batch=4,
    amp=False)
    sucess = model.export(format='onnx')
    print(results)

def TestModelUltralytics():
    model = YOLO("加载训练的.pt文件")
    img=cv2.imread("要检测的图片")
    yolo_classes=list(model.names.values())
    classes_ids=[yolo_classes.index(clas) for clas in yolo_classes]
    conf= 0.2
    results=model.predict(img,conf=conf)
    pass



if __name__ == '__main__':
    TrainData()
    pass
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值