深度学习9-tensorboard

本文介绍了Tensorboard的基本概念,详细阐述了如何在Keras训练过程中使用Tensorboard进行可视化,并展示了如何在自定义训练中集成Tensorboard,虽然自定义训练部分的代码未能成功运行。
摘要由CSDN通过智能技术生成


掌握Tensorboard作用,学会使用Tebsorboard,看评估指标、模型图

1.Tensorboard简介

在这里插入图片描述

2.Keras训练中使用

在这里插入图片描述
在这里插入图片描述
Tensorboard界面解释
在这里插入图片描述

from __future__ import absolute_import, division, print_function, unicode_literals

import tensorflow as tf
import numpy as np 
from tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model
import numpy as np
import datetime
print(tf.__version__)
print(np.__version__)


mnist = np.load("mnist.npz")
x_train, y_train, x_test, y_test = mnist['x_train'],mnist['y_train'],mnist['x_test'],mnist['y_test']

x_train, x_test = x_train / 255.0, x_test / 255.0

# Add a channels dimension
x_train = x_train[..., tf.newaxis]
x_test = x_test[..., tf.newaxis]



class MyModel(Model):
    def __init__(self):
        super(MyModel, self).__init__()
        self.conv1 = Conv2D(32, 3, activation='relu')
        self.flatten = Flatten()
        self.d1 = Dense(128, activation='relu')
        self.d2 = Dense(10, activation='softmax'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值