numpy.stack(arrays, axis=0, out=None)
描述
沿着新的轴连接数组序列。
axis参数指定新轴在结果维度中的索引。
例如,如果axis=0,它将是第一个维度,如果axis=-1,它将是最后一个维度。
参数
arrays :sequence of array_like
每个数组必须具有相同的形状
axis : int, optional
结果数组中的轴,输入数组是沿着这个轴堆叠的
out : ndarray, optional
如果提供,则用来放置结果,形状必须正确,与没有指定out参数时堆栈将返回的形状匹配
返回
stacked : ndarray
堆叠数组的维度比输入数组的大
np.hstack
np.hstack(tup)
tup:除了第二轴之外,数组必须具有相同的形状,一维数组可以是任何长度
水平(按列)顺序堆叠数组。
这等效于沿第二个轴的串联,除了一维数组沿第一个轴的串联。
这个函数对于三维以下的数组最有意义。例如,对于具有高度(第一轴)、宽度(第二轴)和r/g/b通道(第三轴)的像素数据。concatenate、stack和block函数提供更通用的堆叠和拼接操作。
a = np.array((1,2,3))
b = np.array((2,3,4))
np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
a = np.array([[1],[2],[3]])
b = np.array([[2],[3],[4]])
np.hstack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])
通俗理解就是第二个轴水平方向堆叠数组
np.vstack
numpy.vstack(tup)
作用是:按垂直顺序堆叠数组
这等效于形状(N,)的1-D数组已重塑为(1,N)后沿第一轴进行连接
参数:
tup:除第一轴外,所有数组的形状都必须相同。一维数组的长度必须相同
通过堆叠给定数组形成的数组将至少为二维