numpy—np.stack、np.hstack、np.vstack

本文深入介绍了numpy中的数组堆叠函数np.hstack和np.vstack。np.hstack允许你在水平方向(按列)堆叠数组,而np.vstack则是在垂直方向(按行)堆叠数组。这两个函数对于处理多维数据和数组连接非常有用,特别是在数据分析和机器学习中。示例代码展示了如何使用这两个函数将一维和二维数组进行堆叠,帮助读者更好地理解和应用这些函数。
摘要由CSDN通过智能技术生成

文章目录

numpy.stack(arrays, axis=0, out=None)

描述

沿着新的轴连接数组序列。
axis参数指定新轴在结果维度中的索引。
例如,如果axis=0,它将是第一个维度,如果axis=-1,它将是最后一个维度。

参数

arrays :sequence of array_like
每个数组必须具有相同的形状

axis : int, optional
结果数组中的轴,输入数组是沿着这个轴堆叠的

out : ndarray, optional
如果提供,则用来放置结果,形状必须正确,与没有指定out参数时堆栈将返回的形状匹配

返回

stacked : ndarray
堆叠数组的维度比输入数组的大

在这里插入图片描述

np.hstack
np.hstack(tup)
tup:除了第二轴之外,数组必须具有相同的形状,一维数组可以是任何长度

水平(按列)顺序堆叠数组。
这等效于沿第二个轴的串联,除了一维数组沿第一个轴的串联。
这个函数对于三维以下的数组最有意义。例如,对于具有高度(第一轴)、宽度(第二轴)和r/g/b通道(第三轴)的像素数据。concatenate、stack和block函数提供更通用的堆叠和拼接操作。

a = np.array((1,2,3))
b = np.array((2,3,4))
np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])

a = np.array([[1],[2],[3]])
b = np.array([[2],[3],[4]])
np.hstack((a,b))
array([[1, 2],
       [2, 3],
       [3, 4]])

通俗理解就是第二个轴水平方向堆叠数组

np.vstack
numpy.vstack(tup)

作用是:按垂直顺序堆叠数组
	 这等效于形状(N,)的1-D数组已重塑为(1,N)后沿第一轴进行连接

参数:
tup:除第一轴外,所有数组的形状都必须相同。一维数组的长度必须相同
通过堆叠给定数组形成的数组将至少为二维

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值