NLP学习—8.模型部署—Flask、Docker

本文介绍了如何使用Flask封装NLP模型并构建API,通过实例展示了Flask的应用。接着讲解了Docker的相关操作,包括构建、运行、保存和加载镜像,以及常用的Docker命令。对于需要部署模型的读者,这篇内容提供了实用的指导。
摘要由CSDN通过智能技术生成

文章目录

一、Flask

  Flask起到模型封装的作用。做一个新的项目时,可以构建一个新的虚拟环境,构建虚拟环境的优点是:将该项目中独特使用的包构建在特定的环境中。
下面总结一些conda命令

# 查看虚拟环境
conda env list
# 进入虚拟环境
conda activate 虚拟环境名
# 退出虚拟环境
conda deactivate
# 安装Flask
pip install Flask

  下面以一个实例来理解Flask,代码框架如下:
在这里插入图片描述
其中,

  • ft_ai100.bin是利用fasttext训练好的文本分类模型

  • 目标是封装这个模型,封装成一个api,然后方便其他人调用

  • load_model.py中的Model类的作用是:加载模型,并使用这个模型进行预测

    import os
    import fasttext as ft
    
    class Model:
        """Load model and predicting"""
    	
    	# 加载模型
        def __init__(self):
            curr_path = os.path.join(os.path.abspath('.')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值