静态面板模型

1 面板数据

狭义上,数据就是变量的观测值。例如浙江省每年的GDP增加值,北京市每年的人口流入总量等等。像这种对同一个体在不同时期观测的数据称为时间序列数据;另一种常见的数据为截面数据,例如某班级所有同学在同一时刻的身高,同一时期的数学成绩。上述两种数据本质上是一维的,因为它们仅从时间维度与个体为维度对研究对象进行观测。如果将这两个维度进行综合考虑,则形成面板数据。例如,全国各个省级区域在2000—2019年人均收入水平。

个体时间体重
张三201867kg
张三201968kg
李四201871kg
李四201975kg

用变量表示为 { y } i t , i = 1 , 2 , … , N ; t = 1 , 2 , … , T i \{y\}_{i t}, i=1,2, \ldots, N ; t=1,2, \ldots, T_{i} {y}it,i=1,2,,N;t=1,2,,Ti。当 T i = T , i = 1 , 2 , ⋯ N T_i = T,i=1,2,\cdots N Ti=T,i=1,2,N时,数据 { y } i t \{y\}_{i t} {y}it称作平衡面板;反之为非平衡面板。对于微观数据,一般个体 N N N较大,而时间 T T T较短,称这种数据为短面板数据;反之为长面板数据。在宏观领域中,样本截面个体 N N N与观测时间 T T T较为接近,或 T T T较长。


2 面板数据评价

相对一维数据(截面数据与时间序列),面板数据具有以下优势:

  • 面板数据能较好量化不同个体的异质性特征(截面数据难以对较多个体进行综合考虑,容易忽略个体之间异质性差异)

:在散点图中,一些个体呈现正向趋势变化;一些个体呈现负向趋势变化,那么综合来看,这种趋势应该如何变化?如果使用截面数据难以综合测量。

  • 面板数据的容量较大,变量蕴含的信息更加丰富,使估计结果的方差更低。以一元回归模型为例

V a r ( β ^ ) = σ ^ 2 ∑ ( X i − X ˉ ) = σ ^ 2 ( n − 1 ) V a r ( X i ) (1) Var(\hat\beta)=\frac{\hat\sigma^2}{\sum(X_i-\bar X)}= \frac{\hat\sigma^2}{(n-1)Var(X_i)}\tag{1} Var(β^)=(XiXˉ)σ^2=(n1)Var(Xi)σ^2(1)

式中,回归系数的方差受到三部分影响:扰动项、样本容量与自变量的波动。样本容量的增加不仅将低回归系数的方差,还能扩充子自变量的信息量从而提高自变量的波动,间接降低了回归系数的方差。

  • 一定程度上缓解了内生性问题(见后文)

当然面板数据并不完美无瑕的,也存在一些问题。例如,样本数据通常满足 i i d iid iid,从而导致模型可能存在自相关问题;数据收集成本业比较高,收集数据的时间成本较大。


3 固定效应模型

一般的面板数据模型可设为
y i t = x i t β i t + z i δ + λ t + c i + u i t (2) y_{i t}= x_{i t}\boldsymbol\beta_{i t}+z_i\boldsymbol\delta+\lambda_t+c_i+u_{i t}\tag{2} yit=xitβit+ziδ+λt+ci+uit(2)
其中 β i t \boldsymbol\beta_{it} βit为不同时间点与不同截面个体的回归参数, z i z_i zi表示不随时间变化的变量,例如性别、种族等。 λ t \lambda_t λt表示不随截面个体变化而随时间变化的时间效应,例如技术效应, c i c_i ci表示不随时间变化而随截面个体变化的个体效应。如果数据是省级的,则为地区效应;数据是国家级的,则为国家效应。 u i t u_{it} uit表示随机扰动项。时间效应与个体效应与随机扰动项构成了复合扰动项 ε i t \varepsilon_{it} εit。考虑模型(2)需要估计过多参数 ( β i t ) (\beta_{it}) (βit),这将会损失大量的样本从而造成估计结果的不一致,因此需要对模型(2)进行简化。


3.1 单因素固定效应模型与估计

单因素固定效应模型只考虑个体效应,且假定不同截面个体的回归斜率(参数)是相同的,而模型的截距项存在异质性,即
y i t = x i t β + z i δ + c i + u i t (3) y_{i t}= x_{i t}\boldsymbol\beta+z_i\boldsymbol\delta+c_i+u_{i t}\tag{3} yit=xitβ+ziδ+ci+uit(3)
其中 C o v ( x i t , c i ) ≠ 0 Cov(x_{it},c_i)\ne0 Cov(xit,ci)=0,即解释变量与个体效应存在相关性。由于复合扰动项 ε i t = c i + u i t \varepsilon_{it}=c_i+u_{it} εit=ci+uit,故 C o v ( x i t , ε i t ) ≠ 0 Cov(x_{it},\varepsilon_{it})\ne0 Cov(xit,εit)=0。为了使估计量具有优良性质,还需要假定
{ E ( c i ) = 0 V a r ( c i ) = σ c 2 E ( u i t ) = 0 V a r ( u i t ) = σ u 2 E ( c i u i t ) = 0 E ( u i t , u i s ) = 0 ( t ≠ s ) \left\{\begin{array}{l} E(c_i)=0\\ Var(c_i)=\sigma_c^2\\ E(u_{it})=0\\ Var(u_{it})=\sigma_u^2\\ E(c_iu_{it})=0\\ E(u_{it},u_{is}) =0(t\ne s) \end{array}\right. E(ci)=0Var(ci)=σc2E(uit)=0Var(uit)=σu2E(ciuit)=0E(uit,uis)=0(t=s)
复合扰动项的方差为
V a r ( ε i t ) = σ c 2 + σ u 2 (4) Var(\varepsilon_{it}) =\sigma_c^2+\sigma_u^2\tag{4} Var(εit)=σc2+σu2(4)
复合扰动项的协方差为
Cov ⁡ ( ε i t , ε i s ) = E ( ε i t ε i s ) = E [ ( c i + ε i t ) ( c i + ε i s ) ] = E ( c i 2 ) = σ c 2 (5) \begin{aligned} \operatorname{Cov}\left(\varepsilon_{i t}, \varepsilon_{i s}\right) &=\mathrm{E}\left(\varepsilon_{i t} \varepsilon_{i s}\right)=E\left[\left(c_{i}+\varepsilon_{i t}\right)\left(c_{i}+\varepsilon_{i s}\right)\right] \\ &=\mathrm{E}\left(c_{i}^{2}\right)=\sigma_{c}^{2} \end{aligned}\tag{5} Cov(εit,εis)=E(εitεis)=E[(ci+εit)(ci+εis)]=E(ci2)=σc2(5)
由(5)/(4)得到同一个体复合扰动项的相关系数
ρ = corr ⁡ ( ε i t , ε i s ) = σ c 2 σ c 2 + σ u 2 \rho = \operatorname{corr}\left(\varepsilon_{i t}, \varepsilon_{i s}\right)=\frac{\sigma_{c}^{2}}{\sigma_{c}^{2}+\sigma_{u}^{2}} ρ=corr(εit,εis)=σc2+σu2σc2
故截面个体 i i i的扰动项 ε i t \varepsilon_{it} εit
Σ i = ( E ( ε i 1 ε i 1 ) E ( ε i 1 ε i 2 ) ⋯ E ( ε i 1 ε i T ) E ( ε i 2 ε i 1 ) E ( ε i 2 ε i 2 ) ⋯ E ( ε i 2 ε i T ) ⋮ ⋮ ⋮ E ( ε i T ε i T ) E ( ε i T ε i T ) ⋯ E ( ε i T ε i T ) ) T × T = ( σ c 2 + σ u 2 σ c 2 ⋯ σ c 2 σ c 2 σ c 2 + σ u 2 ⋯ σ c 2 ⋮ ⋮ ⋮ σ c 2 σ c 2 ⋯ σ c 2 + σ u 2 ) T × T = ( σ c 2 + σ u 2 ) ( 1 ρ ⋯ ρ ρ 1 ⋯ ρ ⋮ ⋮ ⋮ ρ ρ ⋯ 1 ) T × T = σ v 2 ( 1 ρ ⋯ ρ ρ 1 ⋯ ρ ⋮ ⋮ ⋮ ρ ρ ⋯ 1 ) T × T \begin{aligned} \Sigma_i = & \left(\begin{array}{cccc} E(\varepsilon_{i1}\varepsilon_{i1})&E(\varepsilon_{i1}\varepsilon_{i2})&\cdots &E(\varepsilon_{i1}\varepsilon_{iT})\\ E(\varepsilon_{i2}\varepsilon_{i1})&E(\varepsilon_{i2}\varepsilon_{i2})&\cdots &E(\varepsilon_{i2}\varepsilon_{iT})\\ \vdots&\vdots& &\vdots& \\ E(\varepsilon_{iT}\varepsilon_{iT})&E(\varepsilon_{iT}\varepsilon_{iT})&\cdots &E(\varepsilon_{iT}\varepsilon_{iT}) \end{array}\right)_{T\times T} \\ \\ =&\left(\begin{array}{cccc} \sigma_c^2+\sigma_u^2 & \sigma_c^2 & \cdots & \sigma_c^2\\ \sigma_c^2 & \sigma_c^2+\sigma_u^2 &\cdots&\sigma_c^2\\ \vdots&\vdots& &\vdots& \\ \sigma_c^2 & \sigma_c^2 &\cdots&\sigma_c^2+\sigma_u^2 \\ \end{array}\right)_{T\times T}\\ \\ =& (\sigma_c^2+\sigma_u^2) \left(\begin{array}{cccc} 1 & \rho & \cdots & \rho\\ \rho & 1 &\cdots&\rho\\ \vdots&\vdots& &\vdots& \\ \rho & \rho&\cdots&1 \\ \end{array}\right)_{T\times T}\\ \\ =& \sigma_v^2 \left(\begin{array}{cccc} 1 & \rho & \cdots & \rho\\ \rho & 1 &\cdots&\rho\\ \vdots&\vdots& &\vdots& \\ \rho & \rho&\cdots&1 \\ \end{array}\right)_{T\times T}\\ \end{aligned} Σi====E(εi1εi1)E(εi2εi1)E(εiTεiT)E(εi1εi2)E(εi2εi2)E(εiTεiT)E(εi1εiT)E(εi2εiT)E(εiTεiT)T×Tσc2+σu2σc2σc2σc2σc2+σu2σc2σc2σc2σc2+σu2T×T(σc2+σu2)1ρρρ1ρρρ1T×Tσv21ρρρ1ρρρ1T×T
全体截面个体构成扰动项组成的分块协方差矩阵为
Ω = [ ∑ 1 0 ⋯ 0 0 ∑ 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ ∑ n ] n T × n T \Omega=\left[\begin{array}{cccc} \sum_1 & 0 & \cdots & 0 \\ 0 & \sum_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sum_n \end{array}\right]_{nT\times nT} Ω=10002000nnT×nT


3.1.1 差分估计

单因素固定效应模型一定存在内生性问题。产生内生性的根源在于解释变量与个体效应存在相关性,从而导致复合扰动项与解释变量存在相关性(无论扰动项是否与解释变量存在相关性)。由于这种内生性问题是由个体效应导致的内生性问题,个体效应又不随时间变化而变化,故考虑对模型(3)滞后一期
y i , t − 1 = x i , t − 1 β + z i δ + c i + u i , t − 1 (6) y_{i ,t-1}= x_{i, t-1}\boldsymbol\beta+z_i\boldsymbol\delta+c_i+u_{i,t-1} \tag{6} yi,t1=xi,t1β+ziδ+ci+ui,t1(6)
差分,得到
Δ y i t = Δ x i t β + Δ ε i t (7) \Delta y_{it} = \Delta x_{it}\boldsymbol\beta+\Delta\varepsilon_{it}\tag{7} Δyit=Δxitβ+Δεit(7)
如果 C o v ( Δ x i t , Δ ε i t ) = E ( x i t − x i , t − 1 ) ′ ( ε i t − ε i , t − 1 ) = 0 Cov(\Delta x_{it},\Delta\varepsilon_{it}) = E(x_{it}-x_{i,t-1})^\prime(\varepsilon_{it}-\varepsilon_{i,t-1})=0 Cov(Δxit,Δεit)=E(xitxi,t1)(εitεi,t1)=0,则可用OLS法对模型(5)进行估计。称该估计方法为差分估计(FD),其估计量称为差分估计量。考虑 E ( x i t − x i , t − 1 ) ′ ( ε i t − ε i , t − 1 ) = 0 E(x_{it}-x_{i,t-1})^\prime(\varepsilon_{it}-\varepsilon_{i,t-1})=0 E(xitxi,t1)(εitεi,t1)=0,着意味着解释变量不仅要与同期的复合扰动项不相关,还需要与上期的扰动项不相关,即解释变量与扰动项必须满足强外生关系,否则对模型 ( 3 ) (3) (3)进行OLS估计将存在内生性偏误。


3.1.2 组内离差估计量

另一种估计策略是对每个截面个体(组内)进行内部离差化,即用模型(3)对时间求均值,
y ˉ i = x ˉ i β + z i δ + c i + u ˉ i (8) \bar y_{i }= \bar x_{i}\boldsymbol\beta+z_i\boldsymbol\delta+c_i+\bar u_{i} \tag{8} yˉi=xˉiβ+ziδ+ci+uˉi(8)
用(3)-(8)得
y i t − y ˉ i = ( x i t − x ˉ i ) β + ( u i t − u ˉ i ) (9) y_{i t}-\bar{y}_{i}=\left(x_{i t}-\bar{x}_{i}\right) \boldsymbol \beta+(u_{i t}-\bar{u}_{i})\tag{9} yityˉi=(xitxˉi)β+(uituˉi)(9)
如果 E ( x i t − x ˉ i ) ′ ( ε i t − ε ˉ i ) = 0 E(x_{it}-\bar x_{i})^\prime(\varepsilon_{it}-\bar \varepsilon_{i})=0 E(xitxˉi)(εitεˉi)=0,即解释变量的组内离差与扰动项的组内离差不存在相关性时,模型(9)的参数可利用OLS估计。这种估计方法称作组内离差估计固定效应估计;其对应的估计量称作组内离差估计量固定效应估计量。与差分估计相同,模型(9)的解释变量变量组内离差必须满足严格外生性,因为复合扰动项的组内均值 u ˉ i \bar u_i uˉi包含有各个时期的信息。


3.1.3 最小二乘虚拟变量法(LSDV)

在差分估计与组内离差估计中,不随时间变化的个体效应 c i c_i ci与不随时间变化的定性变量 z i z_i zi均被消除,无法估计二者潜在的影响。为了得到不同截面个体的个体效应,可以通过最小二乘虚拟变量法(LSDV)进行测量。模型为
y i t = x i t β + z i δ + ∑ j = 2 N α j 1 ( i = j ) + u i t (10) y_{i t}= x_{i t}\boldsymbol\beta+z_i\boldsymbol\delta+\sum_{j=2}^{N} \alpha_{j} 1(i=j)+u_{i t}\tag{10} yit=xitβ+ziδ+j=2Nαj1(i=j)+uit(10)
其中 l ( ⋅ ) l(·) l()为示性函数。如果要对对个体效应的显著性检验,只需检验个体虚拟变量系数的联合显著性。即 H 0 : α i = 0 H_0:\alpha_i =0 H0:αi=0,如果拒绝原假设,表明截面个体之间存在显著差异的个体效应,此时可利用组内离差估计量;反之接受原假设则所有截面个体具有同质性,利用OLS混合回归即可。这也比较固定效应估计与OLS估计的依据。


3.1.4 个体固定效应的拟合优度

与截面数据OLS回归一样,面板数据回定效应估计也有相应的可决系数或拟合优度。考虑到面板数据存在组内与组间,因此拟合优度呈现三种:

组间估计拟合优度
R 2 = corr ⁡ ( y ˉ i , y ˉ ^ i ) 2 R^{2}=\operatorname{corr}\left(\bar{y}_{i}, \hat{\bar{y}}_{i}\right)^{2} R2=corr(yˉi,yˉ^i)2
组内估计拟合优度
R 2 = corr ⁡ ( y i t − y ˉ i , y ^ i t − y ˉ ^ i ) 2 R^{2}=\operatorname{corr}\left(y_{i t}-\bar{y}_{i}, \hat{y}_{i t}-\hat{\bar{y}}_{i}\right)^{2} R2=corr(yityˉi,y^ityˉ^i)2
全样本拟合优度
R 2 = corr ⁡ ( y i t , y ^ i t ) 2 R^{2}=\operatorname{corr}\left(y_{i t}, \hat{y}_{i t}\right)^{2} R2=corr(yit,y^it)2


3.2 双因素固定效应模型与估计

双因素固定效应是在单因素固定效应模型的基础上加入不随个体变化的时间效应,即
y i t = x i t β + z i δ + c i + λ t + u i t (11) y_{i t}= x_{i t}\boldsymbol\beta+z_i\boldsymbol\delta+c_i+\lambda_t+u_{i t}\tag{11} yit=xitβ+ziδ+ci+λt+uit(11)
估计方法与单因素固定效应类似,通过组内离差变换得到下式
y i t − y ˉ i = ( x i t − x ˉ i ) β + ( λ t − λ ˉ t ) + ( u i t − u ˉ i ) (12) y_{i t}-\bar{y}_{i}=\left(x_{i t}-\bar{x}_{i}\right) \boldsymbol \beta+(\lambda_t-\bar \lambda_t)+(u_{i t}-\bar{u}_{i})\tag{12} yityˉi=(xitxˉi)β+(λtλˉt)+(uituˉi)(12)
为了估算出时间效应,可以利用虚拟变量法对模型(12)进行设当变形
y i t − y ˉ i = ( x i t − x ˉ i ) β + ∑ t = 2 T α t 1 ( i = t ) + ( u i t − u ˉ i ) (13) y_{i t}-\bar{y}_{i}=\left(x_{i t}-\bar{x}_{i}\right) \boldsymbol \beta+\sum_{t=2}^{T} \alpha_{t} 1(i=t)+(u_{i t}-\bar{u}_{i})\tag{13} yityˉi=(xitxˉi)β+t=2Tαt1(i=t)+(uituˉi)(13)
事实上模型(13)与模型(14)
y i t = x i t β + z i δ + ∑ t = 2 T α t 1 ( i = t ) + ∑ j = 2 N α j 1 ( i = j ) + u i t (14) y_{i t}= x_{i t}\boldsymbol\beta+z_i\boldsymbol\delta+\sum_{t=2}^{T} \alpha_{t} 1(i=t)+\sum_{j=2}^{N} \alpha_{j} 1(i=j)+u_{i t}\tag{14} yit=xitβ+ziδ+t=2Tαt1(i=t)+j=2Nαj1(i=j)+uit(14)
是等价的。模型(14)在原始模型的基础上,加入时间效应的虚拟变量与个体效应的虚拟变量,因此称作双重最小二乘虚拟变量法。关于时间效应与个体效应的显著性检验与单因素的个体效应检验类似。需要注意的是,一般情况下,静态面板数据应该以双因素固定效应模型为逻辑出发点,分别对时间效应与个体效应进行联合显著性检验,如果时间效应不显著,则考虑单因素固定效应模型;反之为双因素固定效应模型。


3.3 交互固定效应模型介绍

除了双因素固定效应模型外,还存在时间效应与固定效应的交互情形。双因素固定效应模型并没考虑到时间效应与个体效应之间的内在关联。白聚山教授将该类模型推向了前沿。具体理论与做法参见Bai, Jushan. Panel data models with interactive fixed effects. (2009) Econometrica。或者https://www.douban.com/group/topic/138237787/。限于篇幅,这里不加详谈。


4 随机效应模型

对于固定效应模型

y i t = x i t β + z i δ + c i + u i t (15) y_{i t}= x_{i t}\boldsymbol\beta+z_i\boldsymbol\delta+c_i+u_{i t}\tag{15} yit=xitβ+ziδ+ci+uit(15)
一个必要条件是 C o v ( x i t , c i ) ≠ 0 Cov(x_{it},c_i)\ne0 Cov(xit,ci)=0。如果假定 C o v ( x i t , c i ) = 0 Cov(x_{it},c_i) = 0 Cov(xit,ci)=0,则称模型(15)为随机效应模型。如果解释变量 x i t x_{it} xit不仅与个体效应不相关,也与扰动项 u i t u_{it} uit不相关,则随机效应模型(15)可利用OLS得到一致估计量。如果模型存在自相关问题,可选取聚类稳健标准误加以解决。如果即存在自相关又存在异方差,可利用异方差自相关稳健的标准误解决。

尽管使用OLS+异方差自相关稳健的标准误能得到一致估计量,但不是最有效估计。此时利用广义最小二乘法(GLS)可得到有效估计,具体操作如下:对模型(15)进行广义离差变换得
y i t − θ y ˉ i = ( x i t − θ x ˉ i ) β + ( 1 − θ ) z i δ + ( 1 − θ ) c i + ( u i t − θ u ˉ i ) (16) y_{i t}-\theta \bar{y}_{i}= \left(x_{i t}-\theta \bar{x}_{i}\right) \beta+(1-\theta)z_i\boldsymbol\delta+ (1-\theta)c_i+ \left(u_{i t}-\theta \bar{u}_{i}\right)\tag{16}\\ yitθyˉi=(xitθxˉi)β+(1θ)ziδ+(1θ)ci+(uitθuˉi)(16)
其中 θ = 1 − [ σ u 2 / ( σ u 2 + T σ c 2 ) ] 1 / 2 ∈ ( 0 , 1 ) \theta=1-\left[\sigma_{u}^{2} /\left(\sigma_{u}^{2}+T \sigma_{c}^{2}\right)\right]^{1 / 2}\in(0,1) θ=1[σu2/(σu2+Tσc2)]1/2(0,1)。此时扰动项复合扰动项 ( 1 − θ ) c i + ( u i t − θ u ˉ i ) (1-\theta)c_i+ \left(u_{i t}-\theta \bar{u}_{i}\right) (1θ)ci+(uitθuˉi)不再有自相关问题。证明略。通过可行广义最小二乘法估计随机效应模型的估计量称作随机效应估计量(RE)

  • θ = 0 \theta = 0 θ=0时, σ c 2 = 0 \sigma_{c}^{2}=0 σc2=0 ,即个体效应的波动为0,不同截面个体不存在异质性,采用OLS回归即可
  • θ = 1 \theta = 1 θ=1时, σ u 2 = 0 \sigma_{u}^{2} =0 σu2=0,即个体效应的波动非常大,从而体现出不同截面个体的具有显著的异质性。此时采取固定效应回归即可。

从上面两种情况可以得到关于个体异质性的检验方法,即检验 H 0 : σ c 2 = 0 H_0:\sigma^2_c=0 H0:σc2=0。若拒绝原假设,表明模型不存在截面个体的异质性,此时利用OLS估计即可,反之模型存在异质性,选择随机效应模型。


5 模型的选择

前文介绍主要介绍了FD估计法,FE估计法,LSDV估计法与RE估计法。不同条件下不同方法适用于不同的模型估计。因此需要构建相应的判别标准对这些方法进行比较分析。在LSDV估计法中,通过构建虚拟变量法可对虚拟变量的系数进行联合性显著检验,从而推断出不同截面个体是否存在系统性的异质性。


5.1 差分估计量与组内估计量的比较

固定效应模型中,差分估计量与组内估计量都能消除个体效应与不随时间变化的定性变量。但事实上,只有当观测期 T = 2 T=2 T=2时,差分估计与组内离差估计等价; T > 2 T>2 T>2时,组内离差估计与差分估计相比更有效。

组内离差
y i 2 − y i 2 + y i 1 2 = ( x i 2 − x i 2 + x i 1 2 ) β + u i 2 − u i 2 + u i 1 2 y_{i 2}-\frac{y_{i 2}+y_{i 1}}{2}=\left(x_{i 2}-\frac{x_{i 2}+x_{i 1}}{2}\right) \beta+u_{i 2}-\frac{u_{i 2}+u_{i 1}}{2} yi22yi2+yi1=(xi22xi2+xi1)β+ui22ui2+ui1
差分
y i 2 − y i 1 2 = x i 2 − x i 1 2 β + u i 2 − u i 1 2 \frac{y_{i 2}-y_{i 1}}{2}=\frac{x_{i 2}-x_{i 1}}{2}\beta+\frac{u_{i 2}-u_{i 1}}{2} 2yi2yi1=2xi2xi1β+2ui2ui1
但是如果扰动项如果是非平稳过程,那么差分估计反而更适合。在动态面板中,差分估计的适用性更大。


5.2 随机效应模型与固定效应模型比较

当存在截面个体异质性条件下,需要在固定效应模型与随机效应模型进行选择。其原假设为 H 0 : H_0: H0:个体效应不与任何解释变量相关(包括定性变量),即原假设认为随机效应模型更为正确。如果原假设成立,通过程模,随机效应估计量 R E RE RE与固定效应估计量 F E FE FE收敛到真实参数向量 β \boldsymbol \beta β,且随机效应模型更有效。反之 F E FE FE估计量与 R E RE RE估计量存在系统性差异,应该选择 F E FE FE模型。hausmn(1978)通过构建wald估计量
H = ( β ^ f e − β ^ r e ) ′ [ Var ⁡ ( β ^ f e ) − Var ⁡ ( β ^ r e ) ] − 1 ( β ^ f e − β ^ r e ) → χ 2 ( d f ) H=\left(\boldsymbol {\hat{\beta}}_{f e}-\boldsymbol{\hat{\beta}}_{r e}\right)^{\prime}\left[\operatorname{Var}\left(\boldsymbol{\hat{\beta}}_{f e}\right)-\operatorname{Var}\left(\boldsymbol{\hat{\beta}}_{r e}\right)\right]^{-1}\left(\boldsymbol{\hat{\beta}}_{f e}-\boldsymbol{\hat{\beta}}_{r e}\right) \rightarrow \chi^{2}(d f) H=(β^feβ^re)[Var(β^fe)Var(β^re)]1(β^feβ^re)χ2(df)
其中 d f df df为解释变量个数。事实上,传统的hausmn检验没有考虑扰动项可能存在的异方差;一种方法是通过自助法,利用计算机模拟再抽样的方法计算固定效应估计量向量与随机效应模型估计量向量之差的方差,即 V a r ( β ^ f e − β ^ r e ) {Var}\left(\boldsymbol{\hat{\beta}}_{f e}-\boldsymbol{\hat{\beta}}_{re}\right) Var(β^feβ^re)

另一种方法是构造如下辅助回归(Wooldridge,2010)
y i t − θ ^ y ˉ i = ( x i t − θ ^ x ‾ i ) ′ β + ( 1 − θ ^ ) z i ′ δ + ( x i t − x ‾ i ) ′ γ + [ ( 1 − θ ^ ) u i + ( ε i t − θ ^ ε ˉ i ) ] (17) y_{i t}-\hat{\theta} \bar{y}_{i}=\left({x}_{i t}-\hat{\theta} \overline{{x}}_{i}\right)^{\prime} \boldsymbol{\beta}+(1-\hat{{\theta}}) {z}_{i}^{\prime} \boldsymbol{\delta}+\left({x}_{i t}-\overline{{x}}_{i}\right)^{\prime} \boldsymbol{\gamma}+\left[(1-\hat{\theta}) u_{i}+\left({\varepsilon}_{i t}-\hat{\theta} \bar{\varepsilon}_{i}\right)\right]\tag{17} yitθ^yˉi=(xitθ^xi)β+(1θ^)ziδ+(xitxi)γ+[(1θ^)ui+(εitθ^εˉi)](17)
(17)式是在(16)式基础上添加了关于解释变量的组内的离差项。当选择随机效应模型时,即扰动项(含有个体效应) [ ( 1 − θ ^ ) u i + ( ε i t − θ ^ ε ˉ i ) ] \left[(1-\hat{\theta}) u_{i}+\left({\varepsilon}_{i t}-\hat{\theta} \bar{\varepsilon}_{i}\right)\right] [(1θ^)ui+(εitθ^εˉi)]与解释变量 ( x i t − x ‾ i ) \left({x}_{i t}-\overline{{x}}_{i}\right) (xitxi)无关,随着样本增大,理应有 γ → 0 \boldsymbol \gamma\to 0 γ0,从而(17)式退化为(16)式。反之若扰动项 [ ( 1 − θ ^ ) u i + ( ε i t − θ ^ ε ˉ i ) ] \left[(1-\hat{\theta}) u_{i}+\left({\varepsilon}_{i t}-\hat{\theta} \bar{\varepsilon}_{i}\right)\right] [(1θ^)ui+(εitθ^εˉi)]与解释变量 ( x i t − x ‾ i ) \left({x}_{i t}-\overline{{x}}_{i}\right) (xitxi)相关,随着样本增大,理应有 γ ≠ 0 \boldsymbol \gamma\ne 0 γ=0,从而选择固定效应。综上,可以根据模型(17)使用聚类稳健标准误后构建如下原假设:
H 0 : γ = 0 H_0:\boldsymbol \gamma =0 H0:γ=0
若拒绝原假设,则选择固定效应模型,反之选择随机效应模型。这种方法同样适合异方差情形。

参考文献

[1] 陈强.,2014,高级计量经济学及stata应用
[2] https://www.douban.com/group/topic/138237787/
[3] Wooldridge,J.,2010.Econometric Analysis of Cross Section and panel Data ,2nd edition.Cambridge,MA:MIT Press


-END-
  • 3
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值