错误:ValueError: Only one class present in y_true. ROC_AUC score is not defined in that case

在使用sklearn.metrics的roc_auc_score计算AUC时遇到ValueError,原因是数据集中一类样本不足。例如,测试数据只包含0类,无1类样本。解决方法是检查数据集的平衡性或在异常处理中忽略此类情况。
摘要由CSDN通过智能技术生成

错误:ValueError: Only one class present in y_true. ROC_AUC score is not defined in that case

错误原因
使用 sklearn.metrics 中的 roc_auc_score 方法计算AUC时,出现了该错误;然而计算AUC时需要分类数据的任一类都有足够的数据;但问题是,有时测试数据中只包含 0,而不包含 1于是由于数据集不平衡引起该错误;

解决办法

import numpy as np
from sklearn.metrics import roc_auc_score
y_true = np.array([0, 0, 0, 0])
y_scores = np.array([1, 0, 0, 0])
try:
    roc_auc_score(y_true, y_scores) ## y_true=ground_truth
except ValueError:
    pass
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值