In Defense of Pre-trained ImageNet Architectures for Real-time Semantic Segmentation of Road-driving Images
代码:https://github.com/orsic/swiftnet
0摘要
对于实时语义分割,许多以前的网络通过自定义轻量化网络解决计算复杂度问题,这种体系结构通过减少相对于通用体系结构的深度、宽度和层容量来降低计算复杂度。
本文:1.借助一个轻量级的通用架构作为主要的 recognition engine。2.利用带横向连接的轻量级上采样恢复预测分辨率。3.以一种新颖的方式融合多分辨率的共享特征来扩大接受范围。
1 引言
2 相关工作
3 提出的分割方法
该方法假定有以下要求。模型应该基于ImageNet预训练的编码器,以便从迁移学习诱导的正则化中受益。解码器应该恢复编码特征的分辨率,以便预测保留细节。为了保持实时处理速度,上采样过程必须尽可能简单。梯度流应该在整个网络中推广,以支持在不寻常的事件中进行随机初始化的训练,因为ImageNet的预训练结果并不有用。
3.1 Basic building blocks
(基础模块)共三个模块
编码