swiftnet

SwiftNet利用预训练的ImageNet模型作为实时语义分割的基础,通过轻量级识别编码器和上采样解码器实现高效分割。论文提出单尺度和交错金字塔融合模型,结合横向连接以增强模型的接收域和细节恢复能力,适用于实时场景。
摘要由CSDN通过智能技术生成

In Defense of Pre-trained ImageNet Architectures for Real-time Semantic Segmentation of Road-driving Images

代码:https://github.com/orsic/swiftnet

0摘要

对于实时语义分割,许多以前的网络通过自定义轻量化网络解决计算复杂度问题,这种体系结构通过减少相对于通用体系结构的深度、宽度和层容量来降低计算复杂度。

本文:1.借助一个轻量级的通用架构作为主要的 recognition engine。2.利用带横向连接的轻量级上采样恢复预测分辨率。3.以一种新颖的方式融合多分辨率的共享特征来扩大接受范围。

1 引言

2 相关工作

3 提出的分割方法

该方法假定有以下要求。模型应该基于ImageNet预训练的编码器,以便从迁移学习诱导的正则化中受益。解码器应该恢复编码特征的分辨率,以便预测保留细节。为了保持实时处理速度,上采样过程必须尽可能简单。梯度流应该在整个网络中推广,以支持在不寻常的事件中进行随机初始化的训练,因为ImageNet的预训练结果并不有用。

3.1 Basic building blocks

(基础模块)共三个模块

编码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值