实时语义分割--ICNet for Real-Time Semantic Segmentation on High-Resolution Images

github代码:https://github.com/hszhao/ICNet

语义分割算法精度和速度对比:

这里写图片描述
由图可以看出,ResNet38,PSPNet,DUC精度虽然较高,但是无法速度相对较慢,无法达到实时,ENet速度较快,但精度较低,而本文算法既可以达到实时,精度也相对较高.

Speed Analysis

PSPNet50的处理不同大小的输入图像所需时间:

这里写图片描述

图中,stage5的卷积核个数为stage4的两倍,由图可知,当输入图像尺寸增加时,卷积核越多,时间增长程度越大,运行时间与输入图像大小成正比.

加速方案

文章分别分析了三种可行的加速方案的可行性.

方案(1):输入下采样

这里写图片描述

如图3所示,下采样尺度为0.25,时间较少,但是得到的f分类结果太粗略,很多小的,重要的细节没有分类出来;尺度为0.5时,相对能分类出更多的物体,但是远处的人和交通等仍然没有分类出来;而且需要时间太多,无法达到实时.因此考虑方案(2).

方案(2):特征下采样

除了直接对输入图像下采样,另一种直接的方法是对feature map下采样.文献19的FCN网络对feature map下采样32次,DeepLab(文献2) 8次.为了验证特征下采样效果,测试下采样率分别为1:8,1:16,1:32次的效果,如表1.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值