Iterative Visual Reasoning Beyond Convolutions论文代码的复现

代码地址:https://github.com/endernewton/iter-reason

Prerequisites(创建一个虚拟环境,名称自定,python=2.7)

1 Tensorflow, tested with version 1.6 with Ubuntu 16.04, installed with(官方提供的指令,我在Ubuntu主机上可用,在服务器上就安装不了):

pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.6.0-cp27-none-linux_x86_64.whl

在这里插入图片描述

2 Other packages needed can be installed with pip:

 pip install Cython easydict matplotlib opencv-python Pillow pyyaml scipy

在这里插入图片描述

#安装opencv时报错,可能是python版本问题,查阅资料进行解决

3 For running COCO, the API can be installed globally:(这一步务必要做,不然在最后训练的时候报错为找不到pycoco.data)any path is okay

mkdir ~/install && cd ~/install
git clone https://github.com/cocodataset/cocoapi.git cocoapi
cd cocoapi/PythonAPI
python setup.py install --user

在这里插入图片描述

这是执行完以上操作,生成的安装目录。

Setup and Running

1 Clone the repository.

git clone https://github.com/endernewton/iter-reason.git
cd iter-reason

2 Set up data, here we use ADE20K as an example.(下载解压设置数据集)

mkdir -p data/ADEcd data/ADE
wget -v http://groups.csail.mit.edu/vision/datasets/ADE20K/ADE20K_2016_07_26.zip
tar -xzvf ADE20K_2016_07_26.zip
mv ADE20K_2016_07_26/* ./
rmdir ADE20K_2016_07_26# then get the train/val/test split
wget -v http://xinleic.xyz/data/ADE_split.tar.gz
tar -xzvf ADE_split.tar.gz
rm -vf ADE_split.tar.gzcd ../..

在这里插入图片描述
在这里插入图片描述

#数据集下载解压的目录如上
3 Set up pre-trained ImageNet models. This is similarly done in tf-faster-rcnn. Here by default we use ResNet-50 as the backbone:

mkdir -p data/imagenet_weights
 cd data/imagenet_weights
 wget -v http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz
 tar -xzvf resnet_v1_50_2016_08_28.tar.gz
 mv resnet_v1_50.ckpt res50.ckpt
 cd ../..

在这里插入图片描述

#以上是下载模型路径如图

4 Compile the library (for computing bounding box overlaps).

cd lib
Make
cd ..

在这里插入图片描述

编译操作

5 To train and test the reasoning modules (based on ResNet-50):

./experiments/scripts/train_memory.sh [GPU_ID] [DATASET] [MEM] [STEPS] [ITER] # MEM in {local} is the type of reasoning modules to use # Examples:# train on ADE20K on the local spatial memory.
./experiments/scripts/train_memory.sh 0 ade local 28 32

报错:在这里插入图片描述

原因没有权限。
报错:在这里插入图片描述

原因:GPU占用
训练截图:在这里插入图片描述

完成的截图在这里插入图片描述

输出的一些结果示例
在这里插入图片描述
在这里插入图片描述
备注:如果你在安装环境时遇到了问题,联系我,我把虚拟环境包导给你。发我邮箱20125032@bjtu.edu.cn

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>