文献阅读-基于多光谱图像的水稻估产模型研究

《基于多光谱图像的水稻估产模型研究》闫昱光

一、研究内容

本研究利用小型无人机平台搭载多光谱相机获取试验田水稻的冠层多光谱图像,并基于此多光谱图像对水稻产量估测方法展开了相应的研究与尝试
本文以黑龙江省庆安县试验田内的水稻为试验对象,以试验田拔节期水稻的冠层多光谱图像为基础,以从中提取出的水稻冠层植被指数特征为研究对象,以同步采集到的水稻生长参数特征作为对照对象,研究了这两类特征与水稻产量之间的关系。
使用相关性检验方法筛选特征,剔除掉与产量特征之间相关性较低的特征。经过筛选后的 6 种特征作为估产因子,使用局部加权线性回归和分位数回归算法分别进行水稻估产建模研究。并使用均方根误差(RMSE)和平均绝对百分误差(MAPE)作为检验指标,对两种算法构建的不同估产模型的精度进行了分析。

技术路线

在这里插入图片描述

二、实验数据获取

试验田整体长 210m,设 6 个梯度施肥处理,分别用 N0、N1、N2、N3、N4、N5 表示,取 4 次重复,共 24 个试验小区。

1.光谱图像获取

试验利用六旋翼无人机搭载 ADC-SNAP 多光谱成像系统采集试验田的水稻冠层多光谱图像。

  • 无人机:
    采用六旋翼无人机(研究团队自主研发),可自由搭载不同的信息采集系统,具有起降方便,易于操控,可自由悬停的特点,非常适用于田块尺度的数据信息采集。试验当天晴朗无风,手动操控无人机起降,设定飞行高度 100 m,于中午 12 时至下午 14 时择机飞行多个架次,确保覆盖全部的试验小区。
  • 多光谱相机:
    拔节期试验田的水稻冠层光谱图像是由机载 ADC-SNAP 多光谱相机拍摄获得。ADC-SNAP 相机拍摄获得的数据图像格式默认为RAW,该格式包含的数据与多光谱相机内部的原始数据有着很强的相似性,记录了拍摄时的原数据信息,额外具有无损压缩的特点。但 RAW 格式的图像不等同于原始数据,是经过简单处理过的,无法直接编辑,需要利用相机自带的多光谱图像编辑软件 PixelWrench2 对 RAW 文件进行处理。本次试验通过PixelWrench2 软件导出 RAW 图像,经过合成及格式转换操作获得 41 副 TIFF 格式的水稻冠层多光谱图像。ADC-SNAP 多光谱相机在 122m 高度,地面分辨率可以达到72.36mm。
    在这里插入图片描述

2.地面数据采集

在航拍当天同步进行地面试验。
采集使用的是 SPAD-502叶绿素测定仪,如图所示,可以即时采集水稻叶片的氮素含量、SPAD 值以及叶面温度数据。本次研究以水稻叶片绿度 SPAD 值代表叶绿素相对含量。

按照五点取样法,在每个试验小区各设定 5 个样本小区,每个样本小区取 5 个样本。取平均值,即试验小区的平均叶片氮素含量和叶绿素相对含量 SPAD。同样按照五点交叉取样法手动采集水稻植株株高。

活体叶绿素仪采集法可以无损、快速的进行测量工作,适用于大田作物叶绿素测定研究。它的原理是通过测量植被叶片对两个不同波长段的吸收率,估测出叶片的叶绿素相对含量
(SPAD 值)。
在这里插入图片描述

三、数据预处理

3.1 光谱图像处理

1.图像拼接

整个试验田的光谱信息无法由单幅图像直接提供,为获得符合试验要求的整副图像,考虑将空中试验采集到的全部多光谱图像进行拼接成一幅全景影像,为之后的研究提供基础试验数据材料。

本次研究选取拔节期拍摄的 41 幅光谱图像,在AgisoftPhotoscan软件中筛选并拼接成整个试验田的多光谱图像。

AgisoftPhotoScan 可以对输入的影像进行自动对齐及优化处理, 进行定向点云提取, 同时依据不同的研究需要生成相应密度等级的点云数据, 进而生成网格、纹理,若是在图像处理阶段导入了对应的 POS 文件,则最后生成的数字正射影像带有对应的地理坐标。

  • 点云是由大量的点构成的集合,每个点具有三维坐标信息,表示物体的表面或结构的点在空间中的位置。
  • 如果需要进行拼接的图像过多,可以分区域计算以提高效率,本次试验采集的图像数量合适,故省略此操作。

首先将多光谱图像导入AgisoftPhotoScan 软件, 由软件自动进行优化对齐处理。在此之前,通过筛选出不合格图像可以节省对齐时间。其次, 生成对应的点云数据,然后可以据此检查整个研究区域是否在选定的限位框内。AgisoftPhotoScan 软件可以通过点云文件生成不规则三角网(TIN), TIN 模型能够划分区域,使得其中的任一点都会落在对应的三角面内部。最后一步纹理生成前, 从软件提供的映射模式中选择自适应正射影像即可
在这里插入图片描述

2.辐射校正

ADC-SNAP 光谱相机拍摄的多光谱图像,记录的像元数据是数字量化值(DN),而后续的植被指数运算中需要的是具有实际意义的光谱反射率。
辐射定标:将相机传感器输出的图像像元 DN 值,转换成地表反射率

chatGPT的回答:
在这里插入图片描述
ADC-SNAP 多光谱相机拍摄的图像包含绿,红,近红 3 个波段,相当于 Landsat 的 TM2、TM3 和 TM4 波段,波长范围在 520 mm 至 920 mm 间。从式子可以看出,地表反射率与 DN 值是线性关系,理论上可以通过确定的 Gain 和 offset 对特定波段进行线性变换,具体到本次研究,即对多光谱图像的近红(NIR)、红(R)和绿(G)这三个波段进行线性变换。

在这里插入图片描述
通过辐射定标完成对光谱图像的绝对大气校正,一定程度上消除了大气散射等因素造成的辐射误差,达到了辐射校正的目的

3.波段运算和植被指数提取

将处理后的多光谱图像在 ENVI 软件中打开,使用软件自带的波段运算工具 Band math,按照公式进行波段运算,得出各个植被指数所对应的多光谱图像。这些图像蕴含的信息即是单一的植被指数数据,使用 ENVI软件自带的感兴趣区工具 ROI,可快速计算各试验小区的水稻冠层植被指数。
在这里插入图片描述
在这里插入图片描述

四、特征选择

1.正态性检验

通常使用 T 检验之类的方法来进行相关性系数检验。由于 T 检验是基于数据呈正态分布的假设的,因此相关性检验要求特征是连续变量,且总体呈正态分布,或接近正态分布。因此进行相关性检验之前,考虑对特征数据进行正态性检验。

2.相关性分析

  • 1.生长参数特征
    叶绿素含量(SPAD)
    叶片氮素含量(LNC)
    株高(height)
    叶面温度(temperature)
    水稻产量(yield)
    在这里插入图片描述
    拔节期 SPAD、LNC 与水稻产量(yield)的相关系数值分布均达到了 0.5 以上,属于强相关水平,其中叶片氮素含量(LNC)与水稻产量相关系数最高,达到了 0.68。其次是 SAPD,相关系数值为 0.57。

T 显著性检验:
在这里插入图片描述
SPAD 和 LNC 的皮尔逊(Pearson)相关系数 T 检验结果的 P 值均在极显著水平 0.01 以下,验证了 SPAD 和 LNC 与 yield 有显著的线性相关性
因此选择拔节期叶绿素含量(SPAD)和叶片氮素含量(LNC) 为之后建模的估产因子。

  • 2.水稻植被指数特征:
    在这里插入图片描述
    拔节期水稻冠层光谱提取出的植被指数中,只有 RVI 的相关系数值在 0.5 以下,在本研究中,RVI 与水稻产量(yield)的线性相关性不强,不适合作为后续建模的参数。除 RVI 以外的另外 4 种植被指数,其相关系数值都在 0.5 以上,表现出与水稻产量的高度线性相关。
    T 显著性检验:
    在这里插入图片描述
    以上验证了这 4 种植被指数与 yield 有显著的线性相关性。而 RVI 相关系数检验的 T-P 值在 0.05 以上,证明其与产量的线性相关性并不强。
    本研究选取 NDVI、DVI、SAVI 和 SAVI 作为后续建模的估产因子。

五、模型构建

5.1 局部加权线性回归

与传统的线性回归不同,LWLR会为每个预测点分配不同的权重,使得在附近的数据点上进行加权线性回归,从而更好地适应数据的非线性特点。
在这里插入图片描述
在构建水稻生长参数特征估产模型时,首先需要确定模型高斯核的参数 K
以SPAD为例:
在这里插入图片描述
从表中可初步确定,K 取值范围的下限 KL在 0.1 与 1 之间,上限 KR 在 1 与 10 之间。此时的 KL 和 KR 范围过大,进一步缩小范围,将 KL 和 KR 分别进行折半查找,结果 KL 的范围缩小为(0.15,0.2),KR 的范围缩小为(2,3)。由此参数 K 的取值范围缩小为(0.15,3)。将参数 K 的取值范围(0.15,3)分为 10 等分,按照交叉验证法分别计算,结果表明 K=0.344时,模型的 RMSEP 最小,其值为 0.18。经过步骤二的操作后,最终的最佳参数 K 取值为 0.344。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述为评估拔节期水稻生长参数特征和植被指数特征构建的水稻估产模型的准确性,除了决定系数(R2),额外选取均方根误差(RMSE)和平均绝对百分误差(MAPE)作为估产模型的检验指标。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
对比生长参数特征模型和植被指数特征模型,生长参数特征模型的 R2 均在 0.7 以上,而植被指数特征模型的 R2 均在 0.7 以下,生长参数特征模型表现要优于植被指数特征模型
综上所述,在本次研究构建的局部加权线性估产模型中,使用水稻生参数特征 SPAD构建的水稻估产模型效果最优,决定系数 R2 为 0.72,平均绝对百分误差 MAPE 为 3.75,均方根误差 RMSE 为 18.8 kg/亩。在水稻估产模型建模中表现最好的植被指数特征是 OSAVI,其决定系数 R2 为 0.69,平均绝对百分误差 MAPE 为 3.53,均方根误差 RMSE 为 19.5 kg/亩。

5.2 分位数回归

本文根据第三章选取的 2 种水稻生长参数(叶绿素相对含量 SPAD 值,叶片氮素含量 LNC)以及 4 种常用植被指数(NDVI,DVI,SAVI,OSAVI)作为模型的自变量 X,以试验田各试验小区的单位产量(kg/亩)为因变量 Y 构建模型。首先,将各个估产因子与水稻产量的线性分位数回归模型初步建立起来。
由图 4-6 可以看出,初步构建了 6 个分位数估产模型,每个模型在全部分位数下的常数项与系数项估计值均处于置信区间范围,且围绕着对应的最小二乘回归模型的估计值波动。最小二乘线性回归使用简单的线性回归参数估计值对所有的数据进行估算,势必导致估产模型的结果产生较大的误差。而分位数回归估产模型在每个分位数处的常数项估计值与系数项估计值并不相同,置信区间也并不一致,说明在水稻产量水平偏低、一般或偏高的情况下,估产特征与水稻产量之间的线性相关强度不同。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在本次研究构建的分位数回归估产模型中,使用植被指数特征 NDVI 构建的水稻估产模型效果最好,决定系数 R2 为 0.675,平均绝对百分误差 MAPE 为 4.203,均方根误差 RMSE 为 44.71 kg/亩。在τ = 0.7分位点下,植被指数特征 NDVI 与水稻产量特征构建的分位数回归模型 y=-46.72x+665.96,为最优的水稻分位数回归估产模型。整体上,作为对照组的水稻生长参数特征,进行水稻分位数回归估产模型建模的效果与植被指数特征几乎在同一水平。

参考文献:基于多光谱图像的水稻估产模型研究_闫昱光

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值