南大:提高LLM在多跳问答的RAG效率

在这里插入图片描述

📖标题:EfficientRAG: Efficient Retriever for Multi-Hop Question Answering
🌐来源:arXiv, 2408.04259

摘要

本文提出了一种高效的检索器EfficientRAG,用于解决检索增强生成(RAG)方法在处理多跳查询等复杂问题时遇到的困难。虽然迭代检索方法通过收集额外信息提高了性能,但目前的方法通常依赖于多次调用大型语言模型(LLM)。EfficientRAG迭代生成新的查询,无需在每次迭代中调用LLM,并过滤掉不相关的信息。实验结果表明,EfficientRAG在三个开放领域的多跳问题回答数据集上超过了现有的RAG方法。

🛎️文章简介

🔸研究问题:如何提高大语言模型(LLM)在多跳问答系统中的检索效率。
🔸主要贡献:论文提出了EfficientRAG框架,通过迭代生成新查询并减少对LLM的依赖,提高了检索效率和问答准确性。

📝重点思路

🔺相关工作

🔸RAG技术已被广泛采用,从外部资源检索知识,为生成的响应奠定基础。
🔸单轮RAG方法可能会在复杂问题中失败,因为除了第一轮检索的信息之外还需要更多信息,例如多跳问题。
🔸为了处理复杂的多跳问题,最近的工作提出通过多轮检索或推理来获取所需信息,但增加了延迟并需要专门的提示。

🔺论文方案

🔸架构:EfficientRAG是一种即插即用的方法,由标记器(Labeler & Tagger)和过滤器(Filter)组成,这些组件的模型结构相同。
🔸训练:利用LLM来合成训练数据,该过程包括多跳问题分解、标签标记、下一跳问题过滤和负采样。

🔺推理步骤

🔸步骤1:给定一个查询,检索器从数据库中获取相关文档片段。
🔸步骤2:标记器负责从数据库中获取相关片段,在标记相关标签的同时,判断这些片段是否有助于回答查询。
🔸步骤3:过滤器根据标记的令牌和当前查询构建新的查询,以便进行下一轮检索。
🔸步骤4:通过迭代过程,EfficientRAG框架能够有效地生成新查询,直到获取足够的信息来回答初始问题。

🔎分析总结

🔸EfficientRAG框架,相较于其他迭代方法,实现了60%-80%的时间效率提升,同时保持了相似的GPU利用率。
🔸EfficientRAG框架达到了最高的准确率和最先进的问答生成性能。
🔸EfficientRAG框架在不同数据集上的适应性表现良好,即使在跨域实验中,也能在某些情况下超越在原始数据上训练的模型。

💡个人观点

论文通过迭代生成新查询,尽量减少对LLM的查询,显著提高了多跳问答系统的检索效率和问答准确性。

附录

在这里插入图片描述

  • 14
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值