📖标题:Dynamic Attention-Guided Context Decoding for Mitigating Context Faithfulness Hallucinations in Large Language Models
🌐来源:arXiv, 2501.01059
🌟摘要
🔸大型语言模型(LLM)经常出现上下文忠实幻觉,由于上下文利用不足和输出不确定性高,输出与检索到的信息存在偏差。我们的不确定性评估实验表明,高不确定性和幻觉之间存在很强的相关性。我们假设注意机制编码了指示上下文利用的信号,并通过探测分析进行了验证。
🔸基于这些见解,我们提出了动态注意力引导上下文解码(DAGCD),这是一个轻量级的框架,在单次解码过程中集成了注意力分布和不确定性信号。QA数据集的实验证明了DAGCD的有效性,在保持计算效率的同时,在忠实性和鲁棒性方面实现了显著提高。
🛎️文章简介
🔸研究问题:大语言模型(LLM)在生成回答时无法忠实于上下文,即上下文忠实性幻觉。
🔸主要贡献:论文提出了动态注意力引导的上下文解码(DAGCD)框架,通过整合注意力分布和基于熵的不确定性信号,增强了